Work Order No. 15730.001.009

No. 1 and 2 Combination Boilers
Sulfur Dioxide
Emission Test Report
New-Indy Catawba, LLC
Catawba, South Carolina
Test Dates: 13-14 October 2021

Prepared For

NEW-INDY CATAWBA, LLC

5300 Cureton Ferry Road Catawba, South Carolina 29704

Wayne Roberts
Project Manager
Approved for Transmittal

Natalie Hammonds Quality Assurance Manager Approved for Transmittal

Natolie Hammonds

Prepared By

WESTON SOLUTIONS, INC.

1625 Pumphrey Ave. Auburn, Alabama 36832-4303 Phone: (334) 466-5600 Fax: (334) 466-5660

29 October 2021

WESTON SOLUTIONS, INC. (WESTON®) INTEGRATED AIR SERVICES – AUBURN OPERATIONS ACCREDITATION STIPULATION

Laboratory: Weston Solutions, Inc.

Accreditor(s): Louisiana Environmental Laboratory Accreditation

Program (LELAP) – Laboratory and Emission Testing Practice

Accreditation ID: LELAP – 03024

Scope: Sulfur Dioxide Sampling and Analysis

Effective: LELAP – 21 December 2001

Renewal Date: LELAP – 30 June 2022

Data Qualifiers

The following are general reporting notes that are applicable to all WESTON reports, unless otherwise noted.

- NL denotes data that was not from a LELAP accredited method.
- LNL denotes lab results that are not from an accredited LELAP laboratory.
- NN denotes data that was not from The NELAC Institute (TNI) accredited method.
- NNL denotes lab results that are not from an accredited TNI laboratory.
- **ED** denotes data that is not to be used for compliance purposes and may deviate from approved procedures.
- Q denotes data whose QA/QC check did not fall within the specified range. This data is still considered valid.
- A denotes data that is anomalously high with no explanation for the outlier.
- **BDL** denotes values that were below the limit of detection of the analyzer and 2% of the span gas was used to calculate an emission rate.
- **DF** denotes a dilution factor.
- NAP denotes emission testing performed by personnel from a non-TNI accredited laboratory.
- **S** denotes analysis that has been subcontracted.
- All values are reported on a "dry" basis, unless otherwise designated as "actual" or "wet" basis.

TABLE OF CONTENTS

SECTION	N 1 INTRODUCTION	5
SECTION	N 2 RESULTS AND DISCUSSION	6
SECTION	N 3 SOURCE TESTING METHODOLOGY	9
SECTION		10
	4.1 Quality Control Procedures	
	4.2 Gas Stream Sampling QA/QC Procedures	
	4.3 QA/QC Checks for Data Reduction and Validation	11
APPEND	IX A SAMPLE CALCULATIONS	
APPEND	OIX B TEST METHODOLOGY	
APPEND	OIX C FIELD DATA – NO. 1 AND 2 COMBINATION BOILER	\mathbf{S}
APPEND	OIX D QUALITY CONTROL DATA	
APPEND	IX E PROCESS OPERATING/PRODUCTION DATA	
	LIST OF TABLES	
Table 2-1	Summary of Mean Emission Results	6
Table 2-2	No. 1 Combination Boiler Condition 1: NCG and SOG Gases	
	Summary of SO ₂ Emission Results	7
Table 2-3		
	Summary of SO ₂ Emission Results	7
Table 2-4	-	
	Summary of SO ₂ Emission Results	8
Table 2-5	No. 2 Combination Boiler Condition 2: NCG Gases Only	
	Summary of SO ₂ Emission Results	8
Table 3-1	Source Testing Methodology	

SECTION 1 INTRODUCTION

Weston Solutions, Inc. (WESTON®) was contracted by New-Indy Catawba, LLC (NIC) to conduct emission testing on the No. 1 and 2 Combination Boilers (CB) at the NIC mill in Catawba, South Carolina. The purpose of the testing was to document the emissions from sources identified in Condition No. 5 (Order to Correct Undesirable Level of Air Contaminants) issued by the South Carolina Department of Health and Environmental Control (SC DHEC).

WESTON performed the emission testing during 13-14 October 2021. The project team included the following individuals.

Name	Project Role
Wayne Roberts	Project Manager
Van Dubay	Test Team Leader
Robert Scroggins	Test Team Member
Brock Ennis	Test Team Member
Natalie Hammonds	Quality Assurance Manager
Ashley Bryant	Report Coordinator

Mr. Dan Mallett of NIC coordinated the testing with mill operations and served as WESTON's technical contact throughout the effort. Mr. James Justice of SC DHEC was present during the testing.

The Louisiana Environmental Laboratory Accreditation Program (LELAP) is the accrediting body through which WESTON obtains both its LELAP and TNI accreditations. WESTON is accredited for operations in the states of Texas, Florida, and Virginia through reciprocity agreements with LELAP.

SECTION 2 RESULTS AND DISCUSSION

WESTON performed the emissions testing program during 13-14 October 2021. All testing was performed by personnel from the WESTON emission testing office in Auburn, Alabama.

The June testing was conducted under non-representative conditions while the mill was still in the startup period. The conditions for this test were more representative of normal operations because there was a higher average Kappa value of 83.3; mill steam demand was higher; and more wood was combusted in the boilers.

Stratification checks, response time checks, and cyclonic flow checks were performed on the sources. The sources are neither stratified nor cyclonic. Results of these tests can be found in the Quality Control Appendix.

Table 2-1 provides a summary of the mean emission results for each source. Tables 2-2 through 2-5 provide detailed summaries of the emission results. Measurement uncertainty is not shown but has been taken into consideration during method development. Any differences between the calculated results presented in the appendices and the results reported in the summary tables are due to rounding for presentation.

There were no operational or sampling complications during the field testing that impacted the data, and the reported test results are believed representative of the emissions encountered during the test periods.

TABLE 2-1
SUMMARY OF MEAN EMISSION RESULTS

Source/Parameter	Mean Test Value
No. 1 Combination Boiler (Condition 1: NCG & SOG Gases) Sulfur Dioxide, lb/hr	342.8
No. 1 Combination Boiler (Condition 2: NCG Gases Only) Sulfur Dioxide, lb/hr	230.7
No. 2 Combination Boiler (Condition 1: NCG & SOG Gases) Sulfur Dioxide, lb/hr	380.9
No. 2 Combination Boiler (Condition 2: NCG Gases Only) Sulfur Dioxide, lb/hr	309.9

TABLE 2-2
NO. 1 COMBINATION BOILER
CONDITION 1: NCG AND SOG GASES
SUMMARY OF SO₂ EMISSION RESULTS

	Run 1	Run 2	Run 3	Mean
Date	10/13/21	10/13/21	10/13/21	
Time Began	0844	1029	1206	
Time Ended	0944	1129	1306	
Stack Gas Data				
Temperature, °F	430	435	438	434
Velocity, ft/sec	64	63	63	63
Moisture, %	17	17	17	17
CO ₂ Concentration, %	8.8	9.0	8.6	8.8
O ₂ Concentration, %	10.5	10.5	10.8	10.6
VFR, x 10 ⁵ dscfm	1.46	1.45	1.44	1.45
Sulfur Dioxide				
Concentration, ppm	280	227	204	237
Emission Rate, lb/hr	407.4	328.3	292.6	342.8

TABLE 2-3
NO. 1 COMBINATION BOILER
CONDITION 2: NCG GASES ONLY
SUMMARY OF SO₂ EMISSION RESULTS

	Run 1	Run 2	Run 3	Mean
Date	10/13/21	10/13/21	10/13/21	
Time Began	1407	1544	1714	
Time Ended	1507	1644	1814	
Stack Gas Data				
Temperature, °F	447	450	444	447
Velocity, ft/sec	61	62	63	62
Moisture, %	17	18	16	17
CO ₂ Concentration, %	9.6	9.9	8.9	9.5
O ₂ Concentration, %	10.1	9.8	10.7	10.2
VFR, x 10 ⁵ dscfm	1.37	1.39	1.43	1.40
Sulfur Dioxide				
Concentration, ppm	140	176	180	165
Emission Rate, lb/hr	191.3	243.6	257.0	230.7

TABLE 2-4
NO. 2 COMBINATION BOILER
CONDITION 1: NCG AND SOG GASES
SUMMARY OF SO₂ EMISSION RESULTS

	Run 1	Run 2	Run 3	Mean
Date	10/14/21	10/14/21	10/14/21	
Time Began	0830	1026	1222	
Time Ended	0930	1126	1322	
Stack Gas Data				
Temperature, °F	463	477	465	469
Velocity, ft/sec	63	68	61	64
Moisture, %	17	19	16	17
CO ₂ Concentration, %	8.2	9.5	7.5	8.4
O ₂ Concentration, %	10.8	10.1	11.5	10.8
VFR, x 10 ⁵ dscfm	1.40	1.43	1.35	1.39
Sulfur Dioxide				
Concentration, ppm	275	262	286	274
Emission Rate, lb/hr	383.7	373.7	385.4	380.9

TABLE 2-5
NO. 2 COMBINATION BOILER
CONDITION 2: NCG GASES ONLY
SUMMARY OF SO₂ EMISSION RESULTS

	Run 1	Run 2	Run 3	Mean
Date	10/14/21	10/14/21	10/14/21	
Time Began	1410	1547	1725	
Time Ended	1510	1647	1825	
Stack Gas Data				
Temperature, °F	457	461	460	459
Velocity, ft/sec	59	59	58	59
Moisture, %	15	15	15	15
CO ₂ Concentration, %	7.2	7.6	7.0	7.3
O ₂ Concentration, %	11.9	11.2	11.7	11.6
VFR, x 10 ⁵ dscfm	1.33	1.33	1.33	1.33
Sulfur Dioxide				
Concentration, ppm	235	234	232	234
Emission Rate, lb/hr	311.3	311.0	307.4	309.9

SECTION 3 SOURCE TESTING METHODOLOGY

The emission testing program was conducted in accordance with the U.S. EPA Reference Methods summarized in Table 3-1. Method descriptions and quality assurance data are provided in the referenced appendices.

TABLE 3-1 SOURCE TESTING METHODOLOGY

		Appendix	Reference	
Parameter	Method Number	Method Description	Quality Control Data	Comments
Volumetric Flow Rate	1,2,4	B.1	D	
Gas Composition	3A	B.2	D	Instrumental
Sulfur Dioxide	6C	B.3	D	Instrumental

These results meet all requirements of TNI unless otherwise specified.

The results within this report relate only to the samples listed in the body of this report.

SECTION 4 QUALITY ASSURANCE/ QUALITY CONTROL

4.1 QUALITY CONTROL PROCEDURES

As part of all testing, WESTON implements a QA/QC program. The field team leader is responsible for implementation of field QA/QC procedures. Individual laboratory managers are responsible for implementation of analytical QA/QC procedures. The overall project manager and the Quality Assurance Manager oversee all QA/QC procedures to ensure that sampling and analyses meet the QA/QC requirements and that accurate data results are generated from the test program.

4.2 GAS STREAM SAMPLING QA/QC PROCEDURES

General checks that are conducted during testing and apply to all methods include the following:

- Performance of leak checks.
- Use of standardized forms, labels, and checklists.
- Maintenance of sample traceability.
- Collection of appropriate blanks.
- Use of calibrated instrumentation.
- Review of data sheets in the field to verify completeness.
- Use of validated spreadsheets for calculation of results.

The following section details the specific procedures applied to the reference method sampling system.

Instrumental Reference Method Sampling Systems

- The sampling system (probe to sample conditioner) is leak-checked prior to the testing.
- All analyzers are calibrated prior to testing to ensure precise and accurate data. Protocol standards are used to calibrate each of the analyzers. Each analyzer is calibrated at three to four points (zero, low, mid, and high range) depending on reference method requirements. Nitrogen or hydrocarbon-free air is used to set the instrument zero. The CO₂ and O₂ calibration standards are 40 to 60 and 100% of span.
- Pre- and post-test calibration bias and calibration drift tests are performed for each test run. The bias check is performed with the calibration standard that is closest to the observed concentration in the sample gas. The average pretest/posttest bias did not exceed 5% of full scale. The calibration drift did not exceed 3%.

- Prior to formal testing, a 12-point stratification check is performed at the test location. Alternatively, per Section 8.1.2 of EPA Method 7E, a three-point stratification check passing through the centroidal area of the stack is performed. The three points (16.7, 50, and 83.3% of the stack diameter) are sampled a minimum of two times the system response.
- A response time check is performed before sampling. Sample flow rate must be maintained within 10% of the flow rate at which the system response time was measured.
- A permanent data record of analyzer responses is recorded using computer software designed by WESTON.

4.3 QA/QC CHECKS FOR DATA REDUCTION AND VALIDATION

All data and/or calculations for flow rates and moisture contents, which are made using a computer software program, are validated by an independent check. In addition, all calculations are spot checked for accuracy and completeness by the Field Team Manager.

In general, all measurement data are validated based on the following criteria:

- Process conditions during sampling or testing.
- Acceptable sample collection procedures.
- Consistency with expected or other results.
- Adherence to prescribed QC procedures.

Any suspect data are flagged and identified with respect to the nature of the problem and potential effect on the data quality.

Upon completion of testing, the Field Team Manager is responsible for preparation of a complete data summary including calculation results, raw data sheets, and laboratory reports.

APPENDIX A SAMPLE CALCULATIONS

SAMPLE CALCULATIONS

No. 1 Combination Boiler Run No. 1

Meter Pressure (Pm), in. Hg

$$Pm = Pb + \frac{\Delta H}{13.6 \, in. H_2 O/in. Hg}$$

where, Pb = barometric pressure, in. Hg ΔH = Pressure differential of orifice in. H₂O

$$Pm = 29.70 \text{ in. } Hg + \frac{1.300 \text{ in. } H_2O}{13.6 \text{ in. } H_2O/\text{in. } Hg} = 29.80 \text{ in. } Hg$$

Absolute Stack Gas Pressure (Ps), in. Hg

$$Ps = Pb + \frac{Pg}{13.6 in. H_2 O/in. Hg}$$

where, Pb = barometric pressure, in. Hg $Pg = Static Pressure, in. H_2O$

$$Ps = 29.70 \text{ in. } Hg + \frac{-1.20 \text{ in.} H_2O}{13.6 \text{ in. } H_2O/\text{in. } Hg} = 29.61 \text{ in. } Hg$$

Standard Meter Volume (Vmstd), dscf

$$Vmstd = \frac{17.64^{\circ}R/in.Hg \ x \ Y \ x \ Vm \ x \ Pm}{Tm}$$

where, Y = meter correction factor

Vm = meter volume, dscf

Pm = meter pressure, in. Hg

Tm = meter temperature, °R

$$Vmstd = \frac{17.64 \text{ °R/in. Hg } x \text{ 1.000 } x \text{ 38.509 dscf } x \text{ 29.80 in. Hg}}{533.3 \text{ °R}} = 37.952 \text{ dscf}$$

Standard Wet Volume (Vwstd), scf

$$Vmstd = 0.04707 \, ft^3 / mL \, x \, Vlc$$

where, $Vlc = volume of H_2O collected, mL$

$$Vmstd = 0.04707 ft^3 / mL \times 168.0 mL = 7.908 scf$$

Moisture Fraction (Measured), (Bws)

$$Bws = \frac{Vwstd}{(Vwstd + Vmstd)} = \frac{7.908 \, scf}{7.908 \, scf + 37.952 \, dscf} = 0.172$$

where, Vwstd = standard wet volume, scf Vmstd = standard meter volume, dscf

Moisture %, (Bws %)

$$Bws = Bws \ x \ 100 = 0.172 \ x \ 100 = 17.2$$

where, Bws = moisture fraction, measured or at saturation, whichever is lowest

Molecular Weight (DRY) (Md), lb/lb-mole

$$Md = (0.44x\%CO_2) + (0.32x\%O_2) + (0.28(100-\%CO_2-\%O_2))$$

$$Md = (0.44 \times 8.8) + (0.32 \times 10.5) + (0.28 (100 - 8.8 - 10.5)) = 29.83 lb/lb-mole$$

Molecular Weight (WET) (Ms), lb/lb-mole

$$Ms = Md (1-Bws) + 18(Bws)$$

where, Md = molecular weight (DRY), lb/lb-mole Bws = moisture fraction, dimensionless

$$Ms = 29.83 \ lb/lb-mole \ (1 - 0.172) + 18 \ (0.172) = 27.79 \ lb/lb-mole$$

Average Velocity (Vs), ft/sec

$$Vs = 85.49 \frac{ft}{sec} \sqrt{\frac{(lb/lb-mole)(in.Hg)}{(^{\circ}R)(in.H_2O)}} \ x \ Cp \ x \ \sqrt{Delta P} \ avg. \ x \ \sqrt{\frac{Ts}{Ps \ x \ Ms}}$$

where, Cp = pitot tube coefficient

Delta $P = \text{velocity head of stack gas, in. } H_2O$

Ts = absolute stack temperature, °R

Ps = absolute stack gas pressure, in. Hg

Ms = molecular weight of stack gas, lb/lb-mole

$$Vs = 85.49 \ \frac{ft}{sec} \ \sqrt{\frac{(lb/lb-mole) \ (in. \ Hg)}{(^{\circ}R)(in.H_2O)}} \ \ x \ \ 0.84 \ \ x \ \ 0.854 \ in. \ H_2O \ \ x \ \ \sqrt{\frac{890.1 \ ^{\circ}R}{29.61 \ in. \ Hg \ x \ 27.79 \ lb/lb-mole}}$$

$$Vs = 63.75 \, ft/sec$$

Average Stack Gas Flow at Stack Conditions (Qa), acfm

$$Qa = 60 sec/min x Vs x As$$

where, Vs = stack gas velocity, ft/sec

As = cross-sectional area of stack, ft^2

$$Qa = 60 \text{ sec/min } x 63.75 \text{ ft/sec } x 78.54 \text{ ft}^2 = 3.00 \text{ E} + 05 \text{ acfm}$$

Average Stack Gas Flow at Standard Conditions (Qs), dscfm

$$Qs = 17.64 \frac{^{\circ}R}{in. Hg} \times Qa \times (1 - Bws) \times \frac{Ps}{Ts}$$

where, Qa = average stack gas flow at stack conditions, ft³/min

Bws = moisture content (dimensionless)

Ps = absolute stack gas pressure, in. Hg

Ts = absolute stack temperature, °R

$$Qs = 17.64 \frac{^{\circ}R}{in. Hg} \times 3.00 E + 05 \frac{acf}{min} \times (1 - 0.172) \times \frac{29.61 in. Hg}{890.1 ^{\circ}R} = 1.46 E + 05 dscfm$$

Sulfur Dioxide Emission Rate (EMR), lb/hr

$$EMR = \frac{SO_2 \ conc. \ x \ MW \ x \ Qs \ \frac{dscf}{min} \ x \ 60 \ \frac{min}{hr} \ x \ 28.32 \ \frac{L}{dscf}}{24.04 \ \frac{L}{g\text{-}mole} \ x \ 1.0 \ x \ 10^6 \ \frac{\mu L}{L} \ x \ 454 \ \frac{g}{lb}}$$

where, MW = molecular weight of SO_2 , 64.06 g/g-mole Qs = stack gas flow at standard conditions, dscfm

$$EMR = \frac{280 \, ppm \, x \, 64.06 \, \frac{g}{g \text{-}mole} \, x \, 1.46 \, E + 05 \, \frac{dscf}{min} \, x \, 60 \, \frac{min}{hr} \, x \, 28.32 \, \frac{L}{dscf}}{24.04 \, \frac{L}{g \text{-}mole} \, x \, 1.0 \, x \, 10^6 \, \frac{\mu L}{L} \, x \, 454 \, \frac{g}{lb}} = 407.4 \, lb/hr$$

APPENDIX B TEST METHODOLOGY

- **B.1** VOLUMETRIC FLOW RATE
- **B.2** GAS COMPOSITION
- **B.3** SULFUR DIOXIDE

B.1 VOLUMETRIC FLOW RATE

Mass emission rates are calculated by multiplying measured target analyte concentrations by calculated volumetric flow rates. Volumetric flow rates are determined using measurement data obtained by EPA Reference Methods 1-4.

The ductwork is measured at the sample location to the nearest 0.25 inch using a steel tape measure. Traverse points are selected in accordance with EPA Reference Method 1 on the basis of ductwork dimensions, geometry, and upstream and downstream disturbances. When a sample location does not meet EPA Reference Method 1 criteria, the maximum recommended number of traverse points are used.

Gas Velocity

The velocity of the gas stream is measured in accordance with EPA Reference Method 2 by reading the instantaneous velocity pressure at each traverse point using an "S" type pitot tube and a leveled, inclined manometer with a scale of 0 to 10 inches. In rare cases of highly negative pressure sources, a Magnahelic gauge with scales of 0 to 5 or 0 to 25 inches of water may be used in place of an inclined manometer. The stack pressure is calculated from the measured static pressure of the stack and the ambient barometric pressure corrected for elevation when applicable. The static pressure is measured by using the static side of the pitot tube, and the barometric pressure is measured using a calibrated aneroid barometer. The stack temperature is measured at each traverse point with a calibrated thermocouple and pyrometer.

Gas Composition and Moisture Content

The composition of the gas stream will be measured in accordance with EPA Reference Method 3 and/or 3A using an Orsat analyzer or Paramagnetic O₂ and Infrared CO₂ analyzers using Protcol-1 gases. Gas composition determinations are conducted using integrated sampling techniques.

Integrated samples are collected by withdrawing a sample from the M5 sampling train into a Tedlar sample bag.

The moisture content of the gas stream is determined according to EPA Reference Method 4, by collecting an integrated sample of source gas from a single point on the gas stream. At the conclusion of each run the volume of condensed moisture collected in the impingers of the sampling train is measured and used to evaluate the moisture content of the gas stream.

When sources are saturated or contain entrained water droplets, moisture content is also determined using the temperature measured at each traverse point and psychometric chart values corrected for stack pressure or by use of saturation vapor pressure tables. In these conditions, the lower moisture of the measured and saturation based values is used for volumetric flow rate calculations.

The molecular weight of the gas stream is calculated using the determined moisture, oxygen, and carbon dioxide concentrations. The balance of the gas stream is assumed to be nitrogen. The volumetric flow is then calculated at stack and standard conditions using the calculated molecular weight, the measured stack temperature, and measured velocity, stack and barometric pressures. Standard conditions are 68 °F and 29.92 inches of mercury and 0% moisture.

Data Acquisition and Reporting

Data are recorded at the time of collection on preprinted data sheets. Calculations are performed (where possible) with preprogrammed calculators or spreadsheet software.

Quality Control

Quality control procedures for volumetric flow measurements involve leak checks of pitot tubes, pitot tube lines and manometers; calibration of gas metering systems; and periodic calibration checks of thermocouples and pyrometers. Magnahelics are verified against inclined manometers prior to each use.

Data transfers are minimized. Data sheets are checked for completeness and accuracy. Calculations are verified by a second person.

B.2 GAS COMPOSITION (INSTRUMENTAL)

Oxygen (O₂) and carbon dioxide (CO₂) testing is conducted in accordance with EPA Reference Method 3A.

Sampling Equipment and Procedures

Figure B-1 illustrates the sampling system. The sample is withdrawn continuously from the source through a heated probe, filter, and sample line to a sample conditioner which removes moisture from the gas stream. The sample is then transported to a Paramagnetic O_2 analyzer and an Infrared CO_2 analyzer.

Sample Analysis

The O_2 analyzer uses an electrochemical cell or a paramagnetic detector, and the CO_2 analyzer uses a non-dispersive infra-red (NDIR) detector to produce an electrical signal which is linearly proportional to the O_2 and CO_2 concentration, respectively.

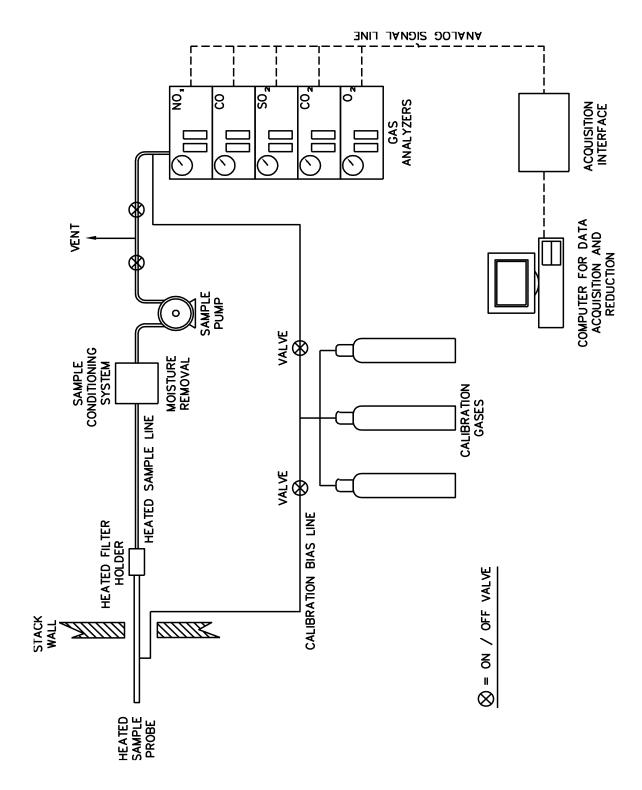


Figure B-1 Continuous Emission Monitoring System

Data Acquisition and Reduction

Data are acquired electronically using a computer with software designed by WESTON for EPA Reference Method 3A analysis. This system generates a calibration curve, converts electronic signals into concentrations, and provides one-minute averages during the sample run and an average concentration over the duration of the sample run.

Quality Control

At the time of analysis, O₂ and CO₂ in nitrogen calibration gases certified according to EPA Protocol-1, are used to calibrate the analyzer and to determine a bias correction factor for the entire system bias in accordance with EPA Reference Method 3A. The calibration gases are introduced directly to the analyzer to generate the calibration curve. A zero gas and an upscale calibration gas are introduced at the probe and recovered through the sampling and analytical system. A bias correction factor is calculated using the ratio of the concentration measured from the sampling system and concentration measured directly at the analyzer. Sample run averages are corrected for system bias results.

B.3 SULFUR DIOXIDE (INSTRUMENTAL)

Sulfur dioxide (SO₂) testing is conducted in accordance with EPA Reference Method 6C.

Sampling Equipment and Procedures

Figure B-1 illustrates the sampling system. The sample is withdrawn from the source through a heated probe, heated filter, and heated sample line to a sample conditioner which removes moisture from the gas stream. The sample is then transported to the analyzer through a Teflon® line.

Sample Analysis

The analyzer measures, at two discrete wavelengths, the absorption of ultraviolet radiation by the gas sample. The concentration of the components absorbing the light are then determined from relationships developed through application of the ideal gas law in concert with the laws of Bouguer, Beer, and Lambert.

Data Acquisition and Reduction

Data are acquired electronically using a computer with software designed by WESTON for EPA Reference Method 6C analysis. This system generates a calibration curve, converts electronic signals into concentrations, and provides bias-corrected averages.

Quality Control

At the time of analysis, SO₂ in nitrogen calibration gases (certified according to EPA Protocol-1) are used to calibrate the analyzer and to determine a bias correction factor for the entire system in accordance with EPA Reference Method 6C.

Calibration gases are introduced directly to the analyzer to generate the calibration curve. Zero level and upscale calibration gases are introduced at the probe and recovered through the sampling and analytical system. A bias correction factor is then calculated using the ratio of the measured concentration of the bias gas introduced through the sampling system and the measured concentration of the bias gas introduced directly to the analyzer. Run averages are adjusted for this bias correction factor.

APPENDIX C FIELD DATA – No. 1 AND 2 COMBINATION BOILERS

No. 1 Combination Boiler (Condition 1: NCG and SOG Gases)

New Indy Catawba, SC 15730.001.009 No. 1 Combination Boiler Condition 1: NCGs & SOGs

EMISSION CALCULATIONS

Date Time Began Time Ended			Run 2 10/13/21 1029 / 1129 /	Run 3 10/13/21 1206 / 1306 /	Mean
Volumetric Flow Rate, (Qs), DSCFM BWS % Oxygen		1.46E+05 V 0.172 V 10.5 V		1.44E+05 V 0.173 V 10.8	
Sulfur Dioxide Concentration, ppm Emission Rate, lb/hr	MW= 64.06	280.0 / 407.4	227.0	204.0 · · · 292.6	237.0 342.8

New Indy Catawba, SC 15730.001.009

No. 1 Combination Boiler

Condition 1: NCGs & SOGs

ISOKINETIC CALCULATIONS

Run Number		1	2	3	Mean
Date		10/13/21	10/13/21	10/13/21	
Time Began		844~	1029 🗸	1206	
Time Ended		1003	1150 🗸	1327	
	INPUT DAT	ГА		/	
Sampling Time, min	(Theta)	64	64	64	64
Stack Diameter, in.	(Dia.)	120.00 🗸	120.00	120.00	120.00
Barometric Pressure, in. Hg	(Pb)	29.70 -	29.70 🗸	29.70 V	29.70
Static Pressure, in. H2O	(Pg)	-1.20 ✓	-1.20 V	-1.20	-1.20
Pitot Tube Coefficient	(Cp)	0.84 🗸	0.84 🌙	0.84	0.84
Meter Correction Factor	(Y)	1.0000 🗸	1.0000	1.0000 🗸	1.0000
Orifice Calibration Value	(Delta H@)	2.0490 🗸	2.0490	2.0490	2.0490
Nozzle Diameter, in.	(Dn)	0.250 🗸	0.250	0.250	0.250
Meter Volume, ft ³	(Vm)	38.509	38.464	38.991 🖊	38.655
Meter Temperature, °F	(Tm)	73.3	80.2	85.7	79.7
Meter Temperature, °R	(Tm-R)	533.3	540.2	545.7	539.7
Meter Orifice Pressure, in. H2O	(Delta H)	1.300	1.300	1.300 🗸	1.300
Ave Sq Rt Orifice Press, (in. H2O) ¹ / ₂	((Delta H)½)avg)	1.140	1.140	1.140	1.140
Volume H2O Collected, mL	(Vlc)	168.0	158.4	166.5	164.3
CO2 Concentration, %	(CO2)	8.8	9.0	8.6	8.8
O2 Concentration, %	(O2)	10.5	10.5	10.8	10.6
Ave Sq Rt Velo Head, (in. H2O) ¹ / ₂	((Delta P)½)avg)	0.854	0.846	0.845	0.848
Stack Temperature, °F	(Ts)	430.1	435.1	437.7	434.3
Stack Temperature, °R	(Ts-R)	890.1	895.1	897.7	894.3
	CALCULATED	DATA			
Nozzle Area, ft ²	(An)	3.41E-04	3.41E-04	3.41E-04	3.41E-04
Stack Area, tt	(As)	78.54	78.54	78.54	78.54
Stack Pressure, in. Hg	(Ps)	29.61	29.61	29.61	29.61
Meter Pressure, in. Hg	(Pm)	29.80	29.80	29.80	29.80
Standard Meter Volume, tt	(Vmstd)	37.952	37.425	37.555	37.644
Standard Water Volume, tt	(Vwstd)	7.908	7.456	7.837	7.734
Moisture Fraction (Measured)	(BWS)	0.172	0.166	0.173	0.170
Moisture Fraction (lower sat/meas)	(BWS)	0.172	0.166	0.173	0.170
Mol. Wt. of Dry Gas, lb/lb-mole	(Md)	29.83	29.86	29.81	29.83
Mol. Wt. of Stack Gas, lb/lb-mole	(Ms)	27.79	27.89	27.77	27.82
Average Stack Gas Velocity, ft/sec	(Vs)	63.75	63.23	63.39	63.46
Stack Gas Flow, actual, tt*/min	(Qa)	300436	297972	298702	299036
Stack Gas Flow, Std , tt*/min	(Qs)	145904	145006	143801	144903
· · · · · · · · · · · · · · · · ·	(42)	143704	142000	143001	177703
Calibration check	(Yqa)	0.9862	0.9931	0.9855	0.988
Percent difference from Y	(* Yu)	0.7002	0.2231	0.7022	-1.17%

m)

1

	S	Final 5 6 cco	5.1			COMMENTS																		V _{m-std} ,	Qs, dscfm	% Isokinetic	Calculated by	15730,00 #1-2 CB mission R
Page 1 of 1	K Factor N/A Leak Checks	Initial 0.003				SAMPLE TRAIN VACUUM	(in Hg)	1	_	1	_	_	' '			. /	/	1	1	1	9	1		Max Vac		\$1 %		
		Volume, ft ³	@ Vac., in. Hg Pitot			IMPINGER EXIT TEMP (°E)		65	60	. 25	[0]	62	63	63	109	65	63	62	29	64	57	57	58	Max Temp	Thermocouple Check	Meter Temp., °F	Ref. Temp, °F	Result
	°F in. Hg- >8 4R-14 in. H ₂ O			Filter ID Sample ID	STATE OF THE PARTY	FILTER EXIT	(a) Jime (×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	Min/Max	The	Met	æ	
	4		78 54 42	5	No. res	FILTER BOX TEMP (%)	LEIMIT ()	263	269	267	406	266	266	201	266	263	344	265	263	266	266	202	266	Min/Max	vrite M3A			
	sure* 24			D C C		PROBE TEMP (%)		264	261	260	177	263	254	152	259	259	259	257	260	258	257	239	hst	Min/Max	12		Post-run	
Method: EPA 4, Moisture	Ambient Temp. «Baro. Pressure*	Impinger Gain Silica Gel Gain	Stack Area	0 7		DGMOUTET	ERIG.	65	99	19	69	11	14	74	46	H	27	26	44	44	44	28	84	Avg Tm	0,/00	Leak Ch		
A 4, M	John Charles		4	0.25	2000	DGM		×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×/	_	ion			
od: EF	1.000 2.05 vd	PR-5Z SS	0.84	5 0.250	200	STACK TEMP		424	426	437	426	614	430	431	430	430	437	432	432	432	434	433	432	Avg Ts	Flue Gas Composition	%	Carbon Dioxide, %	% '5
Meth	ole ID	ength terial	Soeff. P284	0.28	Service and American	DRY GAS METER READING (ft³)	741.220	743.6	1.44.1	748.4	750.8	753.3	155.6	758.0	760.5	762.9	765.3	767.7	1.04	772.5	5the	744.3	174.729	Total Volume			/	Moisture, %
	Console ID Meter Corr., Y	Probe ID/Length Liner Material	Pitot ID/Coeff.	Nozzle ID/Diams.	Avg. INOZZIC L	ORIFICE PRESSURE AH	(in. H ₂ O)	1.3	1.3	1.3	1,3	2	1.3	1:3	1.8	1.3	13	1.3	1.3	1.3	1.3	1.3	1.3	Avg AH	Avg VAH	1.140	88	6101
	New Indy Catawba, SC	Stack 15730.001.009	7 40	RS / BE	THE PERSON NAMED OF PERSONS ASSESSED.	VELOCITY PRESSURE AP	(In. H ₂ O)	t8:	98.	.80	890	18:	lt'	270	.55	st.	89:	+5:	.55	18	pt.	x'	et.	ANG VAP	The alach		Comments	
d Data	New Indy Catawba, SC		1 10 100	RS	D.	CLOCK TIME (plant time)	44.8																10:03	at port elevation	E O	74		
tic Fiel	Client Location/Plant	1	Run Number	Test Personnel	Salliple Illine	SAMPLE TIME (min)	0	4	80	12	16	20	24	28	32	36	40	44	48	52	56	09	64	*Barometric Pressure is at port elevation			SNOTHINGS	Integrated Air Services
Isokinetic Field	Locatic	Sample Location W. O. Number	Run	Test Pe	Sallip	TRAVERSE	Ö	D X-1	2	3	4	4 8-1	2	က	4	B B-1	2	m	4	C 8-1	2	3	4	*Barom		2//	3	Integrat

					>	_	1	,	4																1				A L		1	1573 #1-2
		s	Final	0,000	4/1	90°9				COMMENTS																		V _{m-std} , scf	Qs, dscfm	% Isokinetic	Calculated by	1573 #1-2 Emissio
Page 1 of 1	-	Leak Checks	Initial	9		geod				SAMPLE TRAIN VACUUM	(in Hg)		(/	1	1	1		,1	1	1	(1	7		1	1	Max Vac		% 180	Calcul	
	K Factor			Volume, ft ³	@ Vac., in. Hg	Pitot		e ID		IMPINGER EXIT	TEMP (°F.)	129	58	55	55	57	d	50	19	9	55	24	26	63	53	55	25	Max Temp	Thermocouple Check	Meter Temp., °F	Ker. lemp, 'F	Kesult
		in. Hg 4 DAP -14 in. H ₂ O					Filter ID	Sample ID		FILTER EXIT	TEMP (°F)	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	Min/Max		Met	Ý,	
		# ~	152.1 ml	.3 9		78.54 ft ²		16		FILTER BOX	TEMP (°F)	272	264	263	764	340	200	265	436	262	24	261	262	959	260	262	252	Min/Max 258/267	by Orsat Fyrite M3A	****		
	emp. 73	sure* 24 3		Gain 6		1	>	Total Traverse Points		PROBE		352	159	258	258	257	355	253	257	266	761	361	241	252	260	356	255	Min/Max / 355/261		Leak Check, Pre-run	30 Post-rur	
Method: EPA 4, Moisture	Ambient Temp.	Baro. Pressure* Static Pressure	Impinger Gain	Silica Gel Gain			0.250	otal Trave		B-200 B 500 B) TEMP (°F)	36	38	38	282	34	46	rt.	34	%	88	18	87	83	83	83	84	Avg Tm /	02/002	Leak	101 -	
A 4, M	,	A ROOM			4		0.250	in. T		DGM	TEMP (F)	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	4	ion			
od: EF	A025	2.0549	PR-5Z	SS	0.84	A025	0.250	0.250		STACK	E.	437	432	430	431	430	436	436	436	435	439	446	454	430	438	hhh	H38	Avg Ts. 435,06	10	%	Carbon Dioxide. %	%
Meth	le ID	rr., Y			coeff. P284		0.2			DRY GAS METER READING (ft ²)	058. PFF	781.2	784. 5	786.9	789.3	t-16t	7941	796.5	798.9	801.3	803,8	806,2	808.6	011.0	813.4	815.9	P18.314	Total Volume	Flue Gas	% Oxygen, %	Carbon	Moisture, %
	Console ID	Meter Corr., Y Console ∆H@	Probe ID/Length	Liner Material	Pitot ID/Coeff.	Thermo ID	Nozzle ID/Diams.	Avg. Nozzle Diam.		ORIFICE PRESSURE AH	(in. H ₂ O)	1.3	1.3	- m	1.3	s.	1,3	1.3	1,3	1.3	1.3	1.3	61213	1.3	1.3	1.3	1.3	Avg DH	, Avg VAH	10110	B	10101
	Indy	Catawba, SC 1 Combination Boiler	ck	01.009		2021	BE	min.		VELOCITY PRESSURE	(in. H ₂ O)	000	,65	.57	.55	00	14.	465	45	H8.	.83	pt.	49.	.82	82	花	2.	Avg Vap	121016	ال المنا	Comments	
ld Data	New Indy	No. 1 Combination	Stack	15730.001.009	2	10-13-202	RS/BE	64	20012	TIME (plant time)	10:39																11 50	at port elevation		110		rices
tic Fiel	Client	Location/Plant Source No		W. O. Number	Run Number	Date	Test Personnel	Sample Time		SAMPLE TIME (min)	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	09	64	*Barometric Pressure is at port elevation			SOLUTIONS	Integrated Air Services
Isokinetic Field Data		Location	Sample Location	W.O.W	Run		Test Pe	Samp		TRAVERSE	Ö	12 K	2	e	4	N 18-1	2	n	4	8	2	8	4	C. P-1	2	n	4	*Barom		7		Integrat

	KS Final C. ecc 44 44 90cd	COMMENTS			*				**										V _{m-std} , scf	Q _s , dscfm	% Isokinetic	A	#1-2 CBs ission Re
Page 1 of 1	Factor N/4 Leak Checks Initial 13 Occl n. Hg (3'4)	SAMPLE TRAIN VACUUM (in Hg)	1	,	* \	,	1		,		1	/			-		,	/ / /	Max Vac		% Is		
	Nac., i tot	IMPINGER EXIT TEMP (°F)	62	ço Ço	99	19	63	19	6.1	19	64	63	62	6H	99	61.	4.9	63	Max Temp	Thermocouple Check	Meter Temp., °F Ref. Temp. °F	Result	
	operation in the property of t	FILTER EXIT TEMP (F)	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	Mh/Max	The	Mete		
	Ct. 126 45 1	FILTER BOX TEMP (°F)	264	न्तर	242	750	263	258	260	260	764	258	263	257	287	850	263	1256	257/264	yrite M3A			
	PO	PROBE TEMP (°F)	257	259	260	240	257	258	254	259	258	260	254	259	260	246	358	259	AST/260	by Orsat Fyrite M3A	eck, Pre-run		
Method: EPA 4, Moisture	Ambient Temp. Baro. Pressure* Static Pressure Impinger Gain Silica Gel Gain Stack Area	DGM OUTET TEMP (°F)	83	83	83	34	250	松	200	R	88	18	&	88	8248	88	Z	8	Avg Tm / 85.689	02/00/	Leakgheck	4152 -	
A 4, M	0.250 In. T	DGM INLET TEMP (°F)	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	E	on 10126			
od: EP	AO25 1.000 2.05,44 PR-52 SS 4 0.84 AO25 5 0.250 0.250	STACK TEMP (°F)	435	435	432	435	433	435	437	436	432	437	439	न्या	441	7146	146	443	Avg Ts /	Compositi	% apivoi	%	
Metho	P284 0.25	DRY GAS METER READING (IT') 818,430	220.9	823.2	825.9	828.3	830,9	833.1	835.5	837.9	840.5	842.9	845.3	47.48	850.1	852.5	858.0	857.421	38.991	Flue Gas Composition	Oxygen, %	Moisture, %	
	Console ID Meter Corr., Y Console △H@ Probe ID/Length Liner Material Pitot ID/Coeff Thermo ID Nozzle ID/Diams Avg. Nozzle Diam	ORIFICE PRESSURE ΔH· (in. H ₂ O)	1.3	1.3	1,3	1,3	1.3	1.3	1.3	1.3	1,3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	Avg AH	Avg Jah	1,140 /	WEIOI	
	New Indy Catawba, SC 1 Combination Boiler Stack 15730.001.009 3 1c-13-21 RS/BE	VELOCITY PRESSURE Ap (in. H ₂ O)	-83	08.	· 76	+5º-	C8.	nt.	.63	15.	34.	4.	£5°	.56	.83	, 80	3£.	12	ANG JAP	,8448,	ā		
Isokinetic Field Data	No. 1 Catawba, SC No. 1 Combination E Stack 15730.001.009 3 16-13-21 RS/BE 64 min.	CLOCK TIME (plant time) 12:06			re.													13.27	*Barometric Pressure is at port elevation	5		8	
tic Fie		SAMPLE TIME (min)	4	8	12	16	20	24	28	32	36	40	44	48	52	99	09	64	etric Pressure is			Integrated Air Services	
Isokine	Client Location/Plant Source Sample Location W. O. Number Run Number Date Test Personnel Sample Time	TRAVERSE POINT NO.	D #1	2	3	4	D 81	2	3	4	6 81	2	3	4	C PS-1	2	3	4	*Barom	E-/W		Integrate	0

Sample Recovery Field Data

Method: EPA 4, Moisture

Client	New Indy	Source No	. 1 Combination Boiler
Location/Plant	Catawba, SC	W.O. Number	15730.001.009

Impingers 1 - 3 measurements in grams

Run No.	1		Sample Date	10-13-21	Recovery Date	10-13-21	
Sample ID			Filter ID		Analys	RS RS	
			In	pingers			
	1	2	3		Imp.Total	Silica Gel	Total
Contents						grams	
Final	891.1	722.0	544-8			810.9	
Initial	777.1/	695.6	532.3	3	A	795.8	
Gain	114.0	26.4 V	12.5		152.9	15.11	1681
Imp	oinger Color	clear		Lab	oled?		
Silica G	el Condition	900d		Sea	aled?		

Run No.	2		Sample Date	10-13-21 F	Recovery Date	10-13-2	2/
Sample ID_			Filter ID		Analyst	R5	
			lm	pingers	Constitution and		
	1	2	3		Imp.Total	Silica Gel	Total
Contents						grams	
Final	904.6	714.7	539.6			8172	
Initial	775.9 /	694.6 7	536.3			816.9	
Gain	1287	20.1	3.3		152.1	6.3	158.
lmp	inger Color	clear		Lable	ed?		
Silica Ge	el Condition	9000		Seale	ed?		

Run No.	3		Sample Date	10-13-21	Reco	very Date	10-13	-21
Sample ID			Filter ID			Analyst	RS	
			In	npingers				
Accept the latest	F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	3			Imp.Total	Silica Gel	Total
Contents							grams	
Final	901.1	736-8	541.6				802.5	
Initial	769.0	/ 714.7	, 539.6	111			7922	
Gain	132.1	22.1	/ 2 /	2000 TAV		156.2	10.3	166.5
lm	pinger Color	clear		La	bled?	V		
Silica G	el Condition	good		Se	aled?	~		

Check COC for Sample IDs of Media Blanks

Sample and Velocity Traverse Points - Method 1

□ Particulate Traverse

Client New Indy
Loaction/Plant Catawba, SC
Operator

Client New Indy
Catawba, SC
Operator

Rectangular

Source No. 1 Combination Boiler
15730.001.008

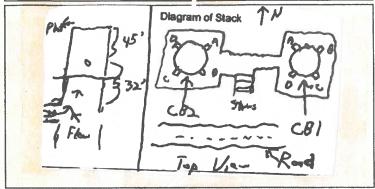
Logarity 15730.001.008

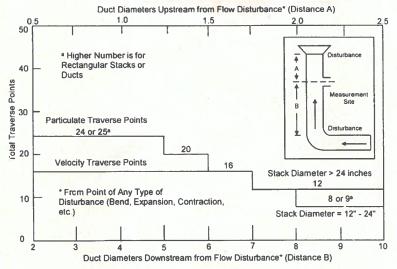
Logarity 15730.001.008

Rectangular

✓ Velocity Traverse

Rectangular Ducts Only	P. Co. 1918 P. Co. 1918
Total Traverse Points	16
Traverse Points per Port	4
Number of Ports	4
Area of Duct (ft³)	78.54
Depth of Duct, diameter (in) = C - D	120
Port Depth (in) = D	7.5
Depth, far wall to outside of port (in) = C	127.5


Traverse Type


Rectangular Ducts Only	11.00
Width of Duct (in)	
Equivalent Diameter (in)	1 1 1 1

34		Distance from	Distance from
Traverse Point	% of Duct	Inside Duct Wall (in)	Outside of Port (in)
1	3.2	3.9	11.4
2	10.5	12.6	20.1
3	19.4	23.3	30.8
4	32.3	38.8	46.3

Flow Disturbances								
Upstream - A (ft)	45							
Downstream - B (ft)	32							
Upstream - A (duct diameters)	4.5							
Downstream - B (duct diameters)	3.2							

☐ Stratification Traverse

		V.		T	raver	se Po	Int Lo	catio	n % (of Stac	:k - C	ircula	r	
		1 /		Number of Traverse Points										
			1	2	3	4	5	6	7	8	9	10	11	12
т		1		14.6		6.7	515	4.4		3.2		2.6		2.1
r		2	ACO	85.4		25.0		14.6	P 42	10.5		8.2		6.7
а		3				75.0	19	29.6		19 4	14	14.6	(6)	11.8
v e	L	4		The state of	STATE OF	93.3	600 L	70.4	Si alta	32.3	Park	22.6	Story.	17.7
r	0	5		-	T	115		85.4		67.7		34.2		25.0
s	а	6	11	V.			E E	95.8		80.6		85.8		35.8
е	t	7				20	741,	100	DE.	89.5		77.4	1	64.4
P	1	8		1500		100		100	A STATE	96.8		85.4		75.0
0	n	9					711	W.L	74.0	1		91.8	UNI	82.3
i	i'i	10		組造的	To be de	21/36					10	97.4	Total I	88.2
n		11			, 1						N			93 3
t		12	THE PERSON	1615	1000	MIA S	4100		To the same				150	97.9

		ĺ		Tra	verse	Poin	t Loca	ation	% of	Stack	Rec	tangı	ılar	
			114		AITE	Nı	ımber	of Tr	avers	e Poir	.s			
			. 1	2	3	4	5	6	7	8	9	10	11	12
т		1		25.0	16.7	12.5	10.0	8.3	7.1	6.3	5.6	5.0	4.5	4.2
r		2	1	75.0	50.0	37.5	30.0	25.0	21.4	18.8	18.7	15.0	13.6	12.5
r c		3	- 120		83.3	62.5	50.0	41.7	35.7	31.3	27.8	25.0	22.7	20.8
	L	4	WAS		Sid.	87.5	70.0	58.3	50.0	43.8	38.9	35.0	31.8	29.2
	0	5					90.0	75.0	64.3	56 3	50.0	45.0	40 9	37.5
	a	6	- 14	24	120		389	91.7	78.6	68.8	61.1	55.0	50.0	45.8
8	t	7							92.9	81.3	72.2	65.0	59.1	54.2
P	Ш	8	1	L. T	342/15	100	i de	No.	Tib	93.8	83.3	75.0	68.2	62 5
0	o n	9						1			94.4	85.0	77.3	70.8
i	.,	10			115	735						95.0	86.4	79.2
n		11					-7					1	95.5	87.5
t		12				ALC: N		120	86 W	3500	250	SINE	1.3	95.8

Recta	ngular
Stack	Points
& M	atrix
9 -	3 x 3
12 -	4 x 3
16 -	4 x 4
20 -	5 x 4
25 -	5 x 5
30 -	6 x 5
36 -	6 x 6
42 -	7 x 6
49 -	7 x 7

Tape measure ID

RUN SUMMARY

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

	O ₂	CO ₂	SO ₂
Method	EPA 3A	EPA 3A	EPA 6C
Conc. Units	%	%	ppm

Time: 08:44 to 09:44

Run Averages

10.4

8.6 274

Pre-run Bias at 07:49

Zero Bias	0.0	0.1	6
Span Bias	10.1	9.9	446
Span Gas	10.1	10.2	458

Post-run Bias at 09:45

Zero Bias	0.1	0.2	9
Span Bias	10.1	9.9	442
Span Gas	10.1	10.2	458

Run averages corrected for the average of the pre-run and post-run bias

10.5 / 8.8 / 280

RUN SUMMARY

Number 2

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

	O ₂	CO ₂	SO ₂
Method	EPA 3A	EPA 3A	EPA 6C
Conc. Units	%	%	ppm

Time: 10:29 to 11:29

Run Averages

10.4 8.7 224

Pre-run Bias at 09:45

Zero Bias	0.1	0.2	9
Span Bias	10.1	9.9	442
Span Gas	10.1	10.2	458

Post-run Bias at 11:30

Zero Bias	0.1	0.2	7
Span Bias	10.1	9.8	446
Span Gas	10.1	10.2	458

Run averages corrected for the average of the pre-run and post-run bias

10.5 / 9.0 / 227 /

RUN SUMMARY

Number 3

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Method	O ₂ EPA 3A	CO₂ EPA 3A	SO₂ EPA 6C	
Conc. Units		%	ppm	

Time: 12:06 to 13:06

Run Averages

10.7 8.3 202

Pre-run Bias at 11:30

Zero Bias	0.1	0.2	7
Span Bias	10.1	9.8	446
Span Gas	10.1	10.2	458

Post-run Bias at 13:10

Zero Bias	0.0	0.2	5
Span Bias	10.0	9.7	448
Span Gas	10.1	10.2	458

Run averages corrected for the average of the pre-run and post-run bias

10.8 / 8.6 / 204 /

RUN DATA

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Source. No.	i Combin	ation boi	ICI	Call	Diation	<u>'</u>			Date: 13 Oct 2021
		mgm s	C	2	CC)2	S	D ₂	
		Time	mv	%	mv	%	mv	ppm	
			V	Vith NC	G's & S	OG's			ta
		08:45	4357	11.1	3095	7.9	2870	280	
		08:46	4431	11.2	3028	7.7	2753	268	
		08:47	4389	11.1	3062	7.8	2713	264	
		08:48	4328	11.0	3118	7.9	2872	280	
		08:49	4360	11.1	3090	7.8	2932	286	
		08:50	4249	10.8	3174	8.0	2917	284	
		08:51	4160	10.6	3253	8.2	2805	273	
		08:52	4106	10.4	3301	8.4	2808	273	
		08:53	4241	10.4	3179	8.1	2888	281	
		08:54	4236	10.8	3179	8.1	2881	281	
		08:55	4044	10.3	3378	8.6	2937	286	
		08:56	4068	10.3	3358	8.5	2892	282	
		08:57	4137	10.5	3296	8.4	2800	273	
		08:58	4074	10.3	3351	8.5	2886	281	
		08:59	4043	10.3	3385	8.6	2968	289	
		09:00	4035	10.2	3392	8.6	2936	286	
		09:01	3989	10.1	3435	8.7	2897	282	
		09:02	4047	10.3	3400	8.6	2891	282	
		09:03	4126	10.5	3332	8.4	2876	280	
		09:04	4030	10.2	3418	8.7	2941	287	
		09:05	4034	10.2	3420	8.7	3002	293	
		09:06	4125	10.5	3353	8.5	2915	284	
		09:07	4164	10.6	3321	8.4	2768	269	
		09:08	4277	10.9	3233	8.2	2770	270	
		09:09	4258	10.8	3265	8.3	2796	272	
		09:10	4217	10.7	3301	8.4	2785	271	
		09:11	4194	10.6	3329	8.4	2759	269	
		09:12	4223	10.7	3305	8.4	2632	256	
		09:13	4233	10.7	3295	8.4	2646	257	
		09:14	4080	10.4	3432	8.7	2751	268	
		09:15	4087	10.4	3442	8.7	2881	281	
		09:16	4198	10.7	3352	8.5	2833	276	
		09:17	4239	10.8	3314	8.4	2723	265	
		09:18	4228	10.7	3326	8.4	2722	265	
		09:19	4340	11.0	3221	8.2	2744	267	
		09:19	4375	11.1	3187	8.1	2732	266	
		09:20	4283	10.9	3271	8.3	2756	268	
		09:21	4215	10.9	3335	8.5	2680	261	
		09.22	4176	10.7	3367	8.5	2727	265	
		09:24	4155	10.5	3392	8.6	2821	275	

RUN DATA

Number 1

Client: New Indy Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Time	C	2	CC)2	S	O_2		
Hille	mv	%	mv	%	mv	ppm		
09:25	4114	10.4	3429	8.7	2857	278		
09:26	3987	10.1	3550	9.0	2878	280		
09:27	4023	10.2	3516	8.9	2770	270		
09:28	4043	10.3	3499	8.9	2706	263		
09:29	4106	10.4	3445	8.7	2758	268		
09:30	4461	11.3	3112	7.9	2740	267		
09:31	4476	11.4	3094	7.8	2680	261		
09:32	3905	9.9	3619	9.2	2668	260		
09:33	3715	9.4	3799	9.6	2825	275		
09:34	3782	9.6	3741	9.5	2912	284		
09:35	3767	9.6	3754	9.5	2903	283		
09:36	3699	9.4	3815	9.7	2957	288		
09:37	3725	9.5	3800	9.6	2919	284		
09:38	3836	9.7	3697	9.4	2783	271		
09:39	3854	9.8	3692	9.4	2829	275		
09:40	3801	9.7	3760	9.5	2829	275		
09:41	3822	9.7	3743	9.5	2866	279		
09:42	3864	9.8	3710	9.4	2817	274		
09:43	3932	10.0	3669	9.3	2712	264		
09:44	3812	9.7	3782	9.6	2727	265		
Avgs	4105	10.4	3399	8.6	2817	274		

RUN DATA

Number 2

Client: New Indy Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

 Time	0	2	CC)2	S) ₂
Time	mv	%	mv	%	mv	ppm
	V	Vith NC	G's & S	OG's		
10:30	4169	10.6	3410	8.6	2250	218
10:31	4194	10.6	3384	8.6	2287	222
10:32	4335	11.0	3251	8.2	2358	229
10:33	4223	10.7	3356	8.5	2418	235
10:34	4168	10.6	3413	8.7	2371	230
10:35	4143	10.5	3425	8.7	2235	216
10:36	4037	10.3	3528	8.9	2249	218
10:37	3891	9.9	3666	9.3	2372	230
10:38	3802	9.7	3748	9.5	2459	239
10:39	3815	9.7	3739	9.5	2475	240
10:40	3884	9.9	3677	9.3	2406	233
10:41	3891	9.9	3670	9.3	2307	224
10:42	3914	9.9	3646	9.2	2319	225
10:43	3885	9.9	3674	9.3	2409	234
10:44	3953	10.0	3610	9.1	2440	237
10:45	3942	10.0	3620	9.2	2386	231
10:46	3947	10.0	3616	9.2	2310	224
10:47	3917	10.0	3640	9.2	2307	224
10:48	3928	10.0	3637	9.2	2321	225
10:49	3860	9.8	3698	9.4	2337	227
10:50	3899	9.9	3665	9.3	2343	227
10:51	3920	10.0	3642	9.2	2275	220
10:52	3829	9.7	3727	9.4	2258	219
10:53	3813	9.7	3744	9.5	2338	227
10:54	3936	10.0	3632	9.2	2309	224
10:55	3949	10.0	3614	9.2	2261	219
10:56	3814	9.7	3743	9.5	2294	222
10:57	3815	9.7	3739	9.5	2256	219
10:58	3913	9.9	3647	9.2	2250	218
10:59	3912	9.9	3650	9.2	2287	222
11:00	3910	9.9	3649	9.2	2293	222
11:01	4003	10.2	3559	9.0	2318	225
11:02	4020	10.2	3543	9.0	2316	225
11:03	4021	10.2	3541	9.0	2301	223
11:04	3998	10.2	3562	9.0	2344	227
11:05	3967	10.1	3594	9.1	2355	228
11:06	3955	10.0	3606	9.1	2355	228
11:07	4038	10.3	3529	8.9	2283	221
11:08	4107	10.4	3466	8.8	2186	212
11:09	4176	10.6	3402	8.6	2201	213

Number 2

Client: New Indy Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: **15730.001.009**Operator: **VD**

	Time		2	CC			O_2		
		mv	%	mv	%	mv	ppm		
	11:10	4192	10.6	3382	8.6	2281	221		
	11:11	4168	10.6	3405	8.6	2303	223		
	11:12	4160	10.6	3414	8.7	2273	220		
	11:13	4294	10.9	3289	8.3	2174	210		
	11:14	4365	11.1	3217	8.2	2198	213		
	11:15	4459	11.3	3126	7.9	2242	217		
	11:16	4476	11.4	3107	7.9	2309	224		
	11:17	4596	11.7	3000	7.6	2341	227		
	11:18	4648	11.8	2923	7.4	2269	220		
	11:19	4537	11.5	3017	7.7	2262	219		
	11:20	4380	11.1	3166	8.0	2287	222		
	11:21	4520	11.5	3031	7.7	2294	222		
	11:22	4358	11.1	3182	8.1	2363	229		
	11:23	4364	11.1	3180	8.1	2389	232		
	11:24	4367	11.1	3179	8.1	2281	221		
	11:25	4380	11.1	3163	8.0	2262	219		
	11:26	4432	11.2	3112	7.9	2312	224		
	11:27	4376	11.1	3167	8.0	2371	230		
	11:28	4355	11.0	3187	8.1	2386	231		
	11:29	4289	10.9	3254	8.3	2328	226		
	Avgs	4110	10.4	3453	8.7	2313	224		

Number 3

Client: New Indy Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

	Tima	C	2	CC		S	O_2	
	Time	mv	%	mv	%	mv	ppm	
eg e		V	Vith NC	G's & S	OG's			
	12:07	4379	11.1	3140	8.0	2129	206	
	12:08	4421	11.2	3084	7.8	2062	199	
	12:09	4389	11.1	3111	7.9	2072	200	
	12:10	4406	11.2	3095	7.9	2087	202	
	12:11	4418	11.2	3085	7.8	2120	205	
	12:12	4388	11.1	3116	7.9	2242	217	
	12:13	4434	11.2	3076	7.8	2245	217	
	12:14	4516	11.5	2997	7.6	2229	216	
	12:15	4555	11.6	2962	7.5	2171	210	
	12:16	4586	11.6	2931	7.4	2049	198	
	12:17	4589	11.6	2927	7.4	2100	203	
	12:18	4526	11.5	2984	7.6	2295	222	
	12:19	4465	11.3	3038	7.7	2402	233	
	12:20	4480	11.4	3026	7.7	2266	220	
	12:21	4525	11.5	2993	7.6	2088	202	
	12:22	4583	11.6	2934	7.4	1951	188	
	12:23	4489	11.4	3016	7.7	1956	189	
	12:24	4401	11.2	3085	7.8	2015	195	
	12:25	4257	10.8	3210	8.1	2139	207	
	12:26	4255	10.8	3212	8.1	2247	218	
	12:27	4218	10.7	3245	8.2	2293	222	
	12:28	4255	10.7	3214	8.2	2251	218	
	12:29	4293	10.8	3180	8.1	2116	205	
		4342	11.0	3135	8.0	2040	197	
	12:30					2033		
	12:31	4316	11.0	3159	8.0	1980	196	
	12:32 12:33	4264 4214	10.8	3201 3246	8.1	2036	191 197	
			10.7		8.2			
	12:34	4206	10.7	3256	8.3	2056	199	
	12:35	4190 4166	10.6	3269	8.3	2057	199	
	12:36		10.6	3293	8.3	2103	203	
	12:37	4271	10.8	3193	8.1	2163	209	
	12:38	4281	10.9	3181	8.1	2266	220	
	12:39	4193	10.6	3265	8.3	2124	205	
	12:40	4153	10.5	3304	8.4	1870	180	
	12:41	4097	10.4	3355	8.5	1832	176	
	12:42	4114	10.4	3340	8.5	1876	181	
	12:43	4118	10.5	3332	8.4	1963	189	
	12:44	4092	10.4	3359	8.5	2148	208	
	12:45	4100	10.4	3358	8.5	2241	217	
	12:46	4163	10.6	3319	8.4	2036	197	

Number 3

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

	C)2	CC)2	S	O ₂	
Time	mv	%	mv	%	mv	ppm	
12:47	4112	10.4	3367	8.5	1920	185	
12:48	4076	10.3	3403	8.6	2027	196	
12:49	4138	10.5	3365	8.5	2193	212	
12:50	4095	10.4	3407	8.6	2301	223	
12:51	4049	10.3	3451	8.7	2274	220	
12:52	4024	10.2	3477	8.8	2207	214	
12:53	4025	10.2	3483	8.8	2178	211	
12:54	4016	10.2	3516	8.9	2153	208	
12:55	3949	10.0	3582	9.1	2138	207	
12:56	3928	10.0	3603	9.1	2072	200	
12:57	3870	9.8	3660	9.3	2041	197	
12:58	3960	10.1	3606	9.1	2053	198	
12:59	4061	10.3	3549	9.0	2026	196	
13:00	4041	10.3	3569	9.0	1988	192	
13:01	4008	10.2	3603	9.1	1972	190	
13:02	4063	10.3	3555	9.0	1925	186	
13:03	4047	10.3	3569	9.0	1885	182	
13:04	4029	10.2	3584	9.1	1881	181	
13:05	4007	10.2	3604	9.1	1909	184	
13:06	4143	10.5	3481	8.8	1890	182	
Avgs	4229	10.7	3278	8.3	2090	202	

BIAS Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Calibration 1

 O_2

Start Time: 07:49

Method: EPA 3A Span Conc. 20.0 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.0	-41	0.0	0.0	0.0	Pass
Span	10.1	3961	10.1	0.0	0.0	Pass

 CO_2

Method: EPA 3A Span Conc. 19.8 %

		Bi	as Resu	lts		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.1	29	0.1	0.0	0.0	Pass
Span	9.9	3898	9.9	0.0	0.0	Pass

SO₂

		Bi	as Resu	ilts		
Standard Gas	Cal. ppm	Response mv	Bias ppm	Difference ppm	Error /	Status
Zero	1	117	6	5	0.5	Pass
Span	457	4543	446	-11	-1.2	Pass

Number 2

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Start Time: 09:45

Calibration 1

 O_2

Method: EPA 3A Span Conc. 20.0 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.0	-26	0.1	0.1	0.5 / /	Pass
Span	10.1	3974	10.1	0.0	0.0	Pass
	i	Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	% /	Status
Zero	0.0	-26	0.1	0.1	0.5	Pass
Span	10.1	3974	10.1	0.0	0.0	Pass
•	*Bias No. 1					

CO₂

Method: EPA 3A Span Conc. 19.8 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%/	Status
Zero	0.1	44	0.2	0.1	0.5	Pass
Span	9.9	3892	9.9	0.0	0.0	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.1	44	0.2	0.1	0.5 🗸	Pass
Span	9.9	3892	9.9	0.0	0.0	Pass
	*Bias No. 1					

Number 2

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Start Time: 09:45

SO₂

		Bi	as Resu	lts	
Standard Gas	Cal. ppm	Response mv	Bias ppm	Difference ppm	Error Status
Zero	1	149	9	8	0.9 / Pass
Span	457	4503	442	-15	-1.6 Pass
		Cali	ibration	Drift	
Standard	Initial*	Fina	al	Difference	Drift
Gas	ppm	mv	ppm	ppm	% Status
Zero	6	149	9	3	0.3 Pass
Span	446	4503	442	-4	-0.4 Pass
•	*Bias No. 1	1			

Number 3

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: VD

Date: 13 Oct 2021

Start Time: 11:30

 O_2

Method: EPA 3A Span Conc. 20.0 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.0	5	0.1	0.1	0.5	Pass
Span	10.1	3962	10.1	0.0	0.0	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.1	5	0.1	0.0	0.0 / /	Pass
Span	10.1	3962	10.1	0.0	0.0	Pass
•	*Bias No. 2					

CO₂ Method: EPA 3A Span Conc. 19.8 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.1	68	0.2	0.1	0.5	Pass
Span	9.9	3869	9.8	-0.1	-0.5	Pass
	m.	Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.2	68	0.2	0.0	0.0	Pass
Span	9.9	3869	9.8	-0.1	-0.5	Pass
	*Bias No. 2	2				

Number 3

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Start Time: 11:30

SO₂

		Bi	as Resu	lts	
Standard Gas Zero	Cal. ppm 1	Response mv 130	Bias ppm 7	Difference ppm 6	Error % Status 0.7 Pass
Span	457	4548	446	-11	-1.2 / Pass
		Cali	bration	Drift	
Standard	Initial*	Fina	al	Difference	Drift ,
Gas	ppm	mv	ppm	ppm	% √ Status
Zero	9	130	7	-2	-0.2 / Pass
	442	4548	446	4	0.4 Pass

Number 4

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Start Time: 13:10

 O_2

Method: EPA 3A Span Conc. 20.0 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	% /	Status
Zero	0.0	-44	0.0	0.0	0.0	Pass
Span	10.1	3947	10.0	-0.1	-0.5	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	% /	Status
Zero	0.1	-44	0.0	-0.1	-0.5	Pass
Span	10.1	3947	10.0	-0.1	-0.5	Pass
Opuli						

CO₂ Method: EPA 3A Span Conc. 19.8 %

Bias Results												
Standard	Cal.	Response	Bias	Difference	Error							
Gas	%	mv	%	%	%	Status						
Zero	0.1	38	0.2	0.1	0.5 🗸	Pass						
Span	9.9	3842	9.7	-0.2	-1.0 🗸	Pass						
Calibration Drift												
Standard	Initial*	Fina	al	Difference	Drift							
Gas	%	mv	%	%	% /	Status						
Zero	0.2	38	0.2	0.0	0.0	Pass						
Span	9.8	3842	9.7	-0.1	-0.5	Pass						
-	*Bias No. 3					1						

Number 4

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Start Time: 13:10

SO₂

		Bi	as Resu	Its	
Standard Gas Zero	Cal. ppm 1	Response mv 108	Bias ppm 5	Difference ppm 4	Error % Status 0.4 Pass
Span	457	4570	448	-9	-1.0 / Pass
		Cali	ibration	Drift	
Standard	Initial*	Fina	al	Difference	Drift
Gas	ppm	mv	ppm	ppm	% / Status
Zero	7	108	5	-2	-0.2 / Pass
Span	446	4570	448	2	0.2 Pass
	*Bias No. 3				

CALIBRATION DATA

Number 1

Client: New Indy Location: Catawba, SC

Source: No. 1 Combination Boiler

Project Number: 15730.001.009

Operator: VD

Date: 13 Oct 2021

Start Time: 07:38

 O_2

Method: EPA 3A

Calibration Type: Linear Regression

% Zero 10.1 20.0	Calibration Result Cylinder ID - EB0062273 CC335419	s Result, mv -38 3962 7937	
Slope 398.9	Curve Coefficient / Intercept -53	S Corr. Coeff. >0.9999	

CO₂

Method: EPA 3A

Calibration Type: Linear Regression

% Zero 10.2 19.8	Calibration Results Cylinder ID - EB0062273 CC335419	Result, mv 32 3892 7913	
Slope 397.7	Curve Coefficients / Intercept -27	Corr. Coeff. 0.9996	

CALIBRATION DATA

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Start Time: 07:38

SO₂

Method: EPA 6C

Calibration Type: Linear Regression

ppm Zero 458 911	Calibration Results Cylinder ID - EB0108003 CC259060	Result, mv 61 4654 9230	
Slope 10.07	Curve Coefficients Intercept 55	Corr. Coeff. >0.9999	

CALIBRATION ERROR DATA

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Start Time: 07:38

 O_2

Method: EPA 3A Span Conc. 20.0 %

Slope 398.9

Intercept -52.9

Standard %	Response mv	Result %	Difference %	Error %	Status
Zero	-38	0.0	0.0	0.0	Pass
10.1	3962	10.1	0.0	0.0	Pass
20.0	7937	20.0	0.0	0.0	Pass

CO₂

Method: EPA 3A Span Conc. 19.8 %

Slope 397.7

Intercept -27.1

Standard _%	Response mv	Result	Difference %	Error	Status
Zero	32	0.1	0.1	0.5	Pass
10.2	3892	9.9	-0.3	-1.5	Pass
19.8	7913	20.0	0.2	1.0	Pass

SO₂

Method: EPA 6C Span Conc. 911 ppm

Slope 10.07

Intercept 55

Standard ppm Zero	Response mv 61	Result ppm 1	Difference ppm 1	Error % 0.1 ✓	Status Pass
458	4654	457	-1	-0.1	Pass
911	9230	911	0	0.0	Pass

METHODS AND ANALYZERS

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

File: C:\Data\211013 New Indy Catawba No. 1 Combination Boiler.cem Program Version: 2.2, built 3 Jul 2020 File Version: 2.04

Computer: WSTRLXX-PC Trailer: 88
Analog Input Device: MCC USB-1608G

Channel 1

Analyte O₂

Method **EPA 3A**, Using Bias Analyzer Make, Model & Serial No. **CAI 600 s/n: E08008-M**

Full-Scale Output, mv
Analyzer Range, %
Span Concentration, %
10000
20.0

Channel 2

Analyte CO₂

Method **EPA 3A**, Using Bias Analyzer Make, Model & Serial No. **CAI 600 s/n: E08008-M**

Full-Scale Output, mv 10000
Analyzer Range, % 20.0
Span Concentration, % 19.8

Channel 5

Analyte SO₂

Method EPA 6C, Using Bias

Analyzer Make, Model & Serial No. **Teledyne T100H SN410** Full-Scale Output, mv **10000**

Analyzer Range, ppm 1000 Span Concentration, ppm 911

No. 1 Combination Boiler (Condition 2: NCG Gases Only)

New Indy Catawba, SC No. 1 Combination Boiler Condition 2: NCGs only

EMISSION CALCULATIONS

Date Time Began Time Ended	Run 1 Run 2 Run 3 Mean 10/13/21 10/13/21 10/13/21 1407 1544 1714 1507 1644 1814
Volumetric Flow Rate, (Qs), DSCFM BWS % Oxygen	1.37E+05 1.39E+05 1.43E+05 1.40E+05 0.174 0.176 0.162 0.170 10.1 9.8 10.7 10.2
Sulfur Dioxide MW= 64.06 Concentration, ppm Emission Rate, lb/hr	140.0 176.0 180.0 165.3 191.3 243.6 257.0 230.7

New Indy Catawba, SC 15730.001.009

No. 1 Combination Boiler

Condition 2: NCGs only

ISOKINETIC CALCULATIONS

Run Number		1	2	3	Mean
Date		10/13/21	10/13/21	10/13/21	
Time Began		1407	1544 🗸	1714	
Time Ended		1526 🗸	1702 🗸	1831	
	INPUT DAT	ΓĀ		/	/
Sampling Time, min	(Theta)	64.0	64	64	64
Stack Diameter, in.	(Dia.)	120.00 /	120.00	120.00	120.00
Barometric Pressure, in. Hg	(Pb)	29.70	29.70 🗸	29.70	29.70
Static Pressure, in. H2O	(Pg)	-1.20 V	-1.20 🗸	-1.20	-1.20
Pitot Tube Coefficient	(Cp)	0.84	0.84 🖊	0.84	0.84
Meter Correction Factor	(Y)	1.0000	1.0000 🗸	1.0000	1.0000
Orifice Calibration Value	(Delta H@)	2.0490	2.0490 🖊	2.0490	2.0490
Nozzle Diameter, in.	(Dn)	0.250	0.250	0.250	0.250
Meter Volume, ft ³	(Vm)	38.708	38.733	38.605	38.682
Meter Temperature, °F	(Tm)	88.4	83.2	84.9	85.5
Meter Temperature, °R	(Tm-R)	548.4	543.2	544.9	545.5
Meter Orifice Pressure, in. H2O	(Delta H)	1.300 🗸	1.300 🗸	1.300	1.300
Ave Sq Rt Orifice Press, (in. H2O) ¹ / ₂	((Delta H)½)avg)	1.140 🗸	1.140 🗸	1.140	1.140
Volume H2O Collected, mL	(Vlc)	166.0	169.7	152.7	162.8
CO2 Concentration, %	(CO2)	9.6	9.9 🗸	8.9	9.5
O2 Concentration, %	(O2)	10.1 🗸	9.8	10.7	10.2
Ave Sq Rt Velo Head, (in. H2O) ¹ / ₂	((Delta P)½)avg)	0.812	0.825	0.836	0.824
Stack Temperature, °F	(Ts)	446.6	449.9 🛩	443.8	446.8
Stack Temperature, °R	(Ts-R)	906.6	909.9	903.8	906.8
	CALCULATED	DATA			
Nozzle Area, ft ²	(An)	3.41E-04	3.41E-04	3.41E-04	3.41E-04
Stack Area, ft	(As)	78.54	78.54	78.54	78.54
Stack Pressure, in. Hg	(Ps)	29.61	29.61	29.61	29.61
Meter Pressure, in. Hg	(Pm)	29.80	29.80	29.80	29.80
Standard Meter Volume, tt	(Vmstd)	37.100	37.478	37.235	37.271
Standard Water Volume, tt	(Vwstd)	7.814	7.988	7.188	7.663
Moisture Fraction (Measured)	(BWS)	0.174	0.176	0.162	0.170
Moisture Fraction (lower sat/meas)	(BWS)	0.174	0.176	0.162	0.170
Mol. Wt. of Dry Gas, lb/lb-mole	(Md)	29.94	29.98	29.85	29.92
Mol. Wt. of Stack Gas, lb/lb-mole	(Ms)	27.86	27.87	27.93	27.89
Average Stack Gas Velocity, ft/sec	(Vs)	61.10	62.23	62.71	62.01
Stack Gas Flow, actual, tt ⁻ /min	(Qa)	287939	293240	295532	292237
Stack Gas Flow, Std , tt*/min		137035	138770	143175	139660
	(Qs)	13/033	130//0	1451/5	133000
Calibration check	(Yqa)	0.9930	0.9871	0.9940	0.991
Percent difference from Y	Z = #1.5				-0.87%

m/

	Final 7.006 7%	COMMENTS																	-std. Scf	E .2) yc	×	11-2 CBs SC ssion Repor
	0 5 1	3																1	V _{m-std} , scf	Q _s , dscfm % Isokinetic	Calculated by	QC by	
Page 1 of 1	lor h	SAMPLE TRAIN VACUUM (In Hg)	1.5	1,5	1.5	\. \.	_			~	1	1	1	1		1	1	11	Max Vac	Check %			
		IMPINGER EXIT TEMP (°F)	(2)	55	25	22	64	60	6C	19	67	63	63	63	65	29	27	58	Max Temp	Thermocouple Check Meter Temp., °F	Ref. Temp, °F	Result	
	19 Volur © Vá Priot Filter ID Sample ID	FILTER EXIT TEMP (°F)	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×/	Min/Max X	The	Œ		
	79 7 ° F 79 7 in. Hg -1.3 in. H ₂ O (58,4 mL 7.4 g 78.54 ft ²	FILTER BOX TEMP (°F)	777	257	264	159	260	261	263	263	260	261	264	267	263	267	872	nee	Min/Max /	by Orsat Fyrite M3A	U		
	0	PROBE TEMP (°F)	258	257	256	258	529	260	260	259	258	257	松	262	26)	266	257	heo	Win/Max	Ψ	Post-run		
Moisture	Ambient Temp. Baro. Pressure* Static Pressure Impinger Gain Silica Gel Gain Stack Area Stack Area O 0.250 Total Traverse P	DGM OUTET P) TEMP (P)	82	88	90	807	6	680	68	20	16	06	90	2	900	84	23	68	88.375	O ₂ /CO ₂			
	0.25 in.	DGM INLET TEMP (°F)	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	-	no			
Method: EPA 4,	AO25 1.000 2.054 A PR-5Z SS SS 4 0.84 AO25 5 0.250	STACK TEMP (°F)	445	05/	445	445	497	966	444	443	445	966	8448	USh	646	644	666	MSG	446.625	Flue Gas Composition	Carbon Dioxide, %	% '	
Meth	P28	DRY GAS METER READING (F) 867-544	860.0	862.4	864.9	27.2	3906	17.1	34.5	76.9	79.3	881.9	884.2	F.988	1.688	4:168	13.8	76.749	Total Volume	Flue Gas Co	Carbon	Moisture, %	7
	Console ID Meter Corr., Y Console AH@ obe ID/Length Liner Material Pitot ID/Coeff. Thermo ID zzle ID/Diams. Nozzle Diam.		8	18	90	86	86	8	878	1871	879		00	8	a	Ø.	81	168	138	>			17.
E	Console ID Meter Corr., Y Console AH® Probe ID/Length Liner Material Pitot ID/Coeff. Thermo ID Nozzle ID/Diams. Avg. Nozzle Diam.	ORIFICE PRESSURE AH (In: H ₂ O)	1.3	50,	- N	1.3	1.3	n -	5	5:	1:3	1.3	1.3	1.3	1,3	1.3	7.3	1.3	1. 30C	I IUO JAH	50		Condition
	New Indy Catawba, SC 1 Combination Boiler Stack 15730.001.009 1 Cent. 3 10 - 13 - 3 1 RS / BE 64 min.	VELOCITY PRESSURE Ap (in. H ₂ O)	4C.	.64	.55	.53	77°	.72	.53	.52	37.	.73	.56	577	00	32.	400	17,	ANG VAP	1890 6031	Comments		
d Data	New Indy Catawba, SC o. 1 Combination E Stack 15730.001.009 10 - 13 - 21 RS / BE RS / BE	CLOCK TIME (plant time)																15:26	at port elevation	5		Θ.	
Isokinetic Field	Client Location/Plant Source No. ample Location W. O. Number Run Number Date Test Personnel	SAMPLE TIME (min)	4	80	12	16	20	24	28	32	36	40	44	48	52	56	09	64	*Barometric Pressure is at port elevation	State of the state	2	Integrated Air Services	
Isokine	Client Location/Plant Source Sample Location W. O. Number Run Number Test Personnel Sample Time	TRAVERSE POINT NO.	BK-1D	2	8	4	A B-1	2	3	4	17 G-1 B	2	3	4	C 10-1	2	3	4	*Barom	WA	3	Integrat	
		STOKEN IN		-				75				4		, let									54

ACCES Ambient Temp. 8 2	730.001.009 I-2 CBs SO ₂ sion Report
Ambient Temp. 8	
Ambient Temp. 8 2	
Accession Acce	
A005: EPA 4, Moisture A005: Total Temp. 6 2 2.05x/0 (M) Static Pressure 12, 2, 3 2.05x/0 (M) Static Pressure 15, 6 Static Pressure 15, 6 Static Pressure 15, 6 Static Pressure 17, 7 Static Pressure 17	
A025 Ambient T 1.000 Satisfactory May Static Press Static	
AO25 1.000 2.05% M2 SS SS SS O.250 M2 SS SS O.250 0.25 O.250 in. 9499 X 449 X 452 X 452 X 452 X 452 X 664 X 449 X 453 X 664 X 664 X 664 X 664 X 665 X 664 X 665 X 666 X	
AO25 1.000 2.05% M2 SS SS SS O.250 M2 SS SS O.250 0.25 O.250 in. 9499 X 449 X 452 X 452 X 452 X 452 X 664 X 449 X 453 X 664 X 664 X 664 X 664 X 665 X 664 X 665 X 666 X	
## AO25 AO25 1.000 2.0500 2.0500 2.0500 2.0500 4451 4451 4461 3.4466 4451 4451 4451 4451 4451 4451 4451	
# 1	7
	Lond it ion
Console in sole in sol	Con
New Indy Catawba, SC 1 Combination Boiler Stack 15730.001.009 2 2 2 2 2 2 2 15730.001.009 3 Ap A	
A Data New Indy Catawba, SC 3. 1 Combination E Stack 15730.001.009 RS / BE C / min. RS / BE Color (In Time) RS /	
Client Catawy Location/Plant Source No. 1 Combil Sample Location Sample Locati	
Client Catawa Catawa Sample Location/Plant Sample Location Staware No. 1 Combi Sample Time 6 4 A-1 A 4 8 8 A-1 A 4 8 B-1 20 6 B-1 20 6-13-7 14 A-1 A 4 8 A-1 A 4 8 A-2 A 40 B-1 20 B-1 20	55

				9	100			2 7										11/10							700				Emis	730.001.00 1-2 CBs SC ssion Repo	19 0 ₂ rt
			Final	0	116	Coop	2	COMMENTS	· e														March March	/		V _{m-std} ,	Qs, dscfm	ted by	QC by		
Page 1 of 1	Eactor 1111	acioi MA	Leak Checks	0.00		(20,00)	13 Cm.	SAMPLE TRAIN VACILIN	(lu-Hg)	1.5	1,5	1,5	57	1.5	6.5	1.5	5.7	1.5	1.5	1.5	4.5	1.5	1.5	1.8	1.5	Nax Vac	%	Calculated by			
	7	4		Volume, ft ³	@ Vac., in. Hg	itot	le ID Run	IMPINGER	TEMP (°F)	67	167	63	60	65	25	55	55	00)	57	55	54	63	62	58	QQ Qq	Max Temp	Thermocouple Check	Ref. Temp, °F	Result		
		g	20			i	Sample ID	FILTER	TEMP (°F)	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	Min/Max	The	- X	1		
(1	2	2 3	17		78.54 ft ²	16	FILTER BOX	TEMP (°F)	263	972	268	264	372	266	172	4,72	266	263	227	263	259	258	272	22	Min/Max 158	rite M3A				
C	- 1	ure* 27,	Sure -1, 5	6			se Points	PROBE TEMP (°E)		492	26C	764	259	261	257	258	261	21,0	263	262	263	172	452	260	255	9375254764	O ₂ /CO ₂ by Orsat Fyrite	Post-run			
Moisture	Ambient Temp.	Baro. Pressure*	Static Pressure Impinger Gain	Silica Gel Gain		Stack Area	0 0.250 Total Traverse Points	DGM OUTET	TEMP (°F)	84	84	84	84	284	7	88	85	28	85	85	78	87	86	200	198	84.9375	2/CO2				
4 4, MG	4		S			0	0.250 in. To	DGM	TEMP (°F)	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	>	c				
Method: EPA 4,	A025		2.0549 PR-52	SS	0.84	A025	0.250	STACK	(F)	044	451	450	449	446	445	444	444	141	166	1441	166	141	442	442	412	Avg T _s	ompositio	oxide, %	%	7	
Metho					P284	0	0.25	DRY GAS METER READING (ft³)	935.400	937.6 *	740.3	9:266	945. O	947.4	947.8	952. 2	454, 6	952,1	959.5	6112	764.3	766,7	1.616	971.6	924.605	Total Volume	000	Carbon Dioxide, %	Moisture, %	endition	
	Console ID	Meter Corr., Y	Console ∆H@ Probe ID/Length	Liner Material	Pitot ID/Coeff.	Thermo ID	Nozzle IU/Diams. Avg. Nozzle Diam.	ORIFICE PRESSURE AH			1.3	1.3		1.3	1.3	1.3	1.3		1,3	1,3	1.3	6.3	1.3		1.3	1. ONE J	Avg VAH	A 1011		U	9
	Indy	oa, SC	1 Combination Boiler Stack	01.009		-21	min.	VELOCITY PRESSURE	(in. H ₂ 0)	.80	72-	10.	09°	770	072	.63	.58	.79	17.	179:	19"	00	,73	690	,65	8355 8355	20001-	nents			
ld Data	New Indy	Catawba, SC	No. 1 Combinat	15730.001.009	3	10-13-	64 mi	CLOCK TIME (plant time)	17:14			e e			•										18:31	*Barometric Pressure is at port elevation	5	Comments Comments	ices		
tic Fiel	Client	Location/Plant		W. O. Number	Run Number	Date	Sample Time	SAMPLE TIME (min)	0	4	8	12	16	20	24	28	32	36	40	44	48	52	999	09	64	tric Pressure is		SOLUTIONS	Integrated Air Services		
Isokinetic Field Data		Locatic	Sample Location	W.O.	Run I	ŀ	Sample Time	TRAVERSE	00	A-1	2	3	4	B-1	2	n	4	C-1	- 2	က	4	D-1	2	3	4	*Barome	FIM	3	Integrate	4	56

Sample Recovery Field Data

			Method: EPA 4	, Moisture					
	Client	New Indy				No. 1 Com		oiler	
Location/	Plant C	Catawba, SC		W	O. Number	1573	0.001.009		
	Impingers 1 - 3 measurements in grams								
Run No.	1	100	Sample Date _	10-13-21	Reco	very Date	10-13	-21	
Sample ID			Filter ID			Analyst	RJ		
	An Least 1989		lm	pinge <mark>rs</mark>				1	
	1	2	3			Imp.Total	Silica Gel	Total	
Contents							grams		
Final	884-6	701.98	539.1				1810.1		
Initial	751.4	680.7	535.1				8025/		
Gain	133-2 √	21.2	4.0		14.4,4,	158.4	7.6	1662	
Imp	oinger Calor	- wood			Labled?				
Silica Ge	el Condition	~ cood			Sealed?	_			
				×		No.	All The state of		
Run No.	Run No. 2 Sample Date 10-13-21 Recovery Date 10-13-2								
Sample ID			Filter ID			Analyst	PS		
			lm	pingers					
	1	2	3			Imp.Total	Silica Gel	Total	
Contents				100			grams		
Final	898.4	722.0	542,3			/	8280		
Initial	763.9	701.9	539.1			/	816.1		
Gain	134.5	20.1	3.2			157.8	11.9	169.7	
Imp	oinger Color	dear			Labled?	1			
Silica G	el Condition	9-00			Sealed?	_			
		JEWE BANKE							
Run No.	3		Sample Date	10-13-21	Reco	overy Date	10-13	- 21	
Sample ID			Filter ID			Analyst	RS		
	Impingers &								
	1	2	3			Imp.Total		Total	
Contents					A CONTRACTOR		grams		
Final	900,4	201.6	595.2				837.2	# 1111	
Initial	779.2	682.2	542.3		a view and	/	8280		
Gain	121.2	19.4	2.9			143.5	9.2	152.7	
Imi	pinger Color	Clear			Labled?		V		

Check COC for Sample IDs of Media Blanks

Sealed?

bood

Impinger Color

Silica Gel Condition

RUN SUMMARY

Number 4

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

	O_2	CO ₂	SO ₂	
Method	EPA 3A	EPA 3A	EPA 6C	
Conc. Units	%	%	ppm	

Time: 14:07 to 15:07

Run Averages

10.0

9.3

141

Pre-run Bias at 13:10

Zero Bias	0.0	0.2	5
Span Bias	10.0	9.7	448
Span Gas	10.1	10.2	458

Post-run Bias at 15:09

Zero Bias	0.0	0.2	7
Span Bias	10.0	9.8	445
Span Gas	10.1	10.2	458

Run averages corrected for the average of the pre-run and post-run bias

10.1

9.6

140

RUN SUMMARY

Number 5

Calibration 1

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Project Numi

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

	O_2	CO ₂	SO ₂
Method	EPA 3A	EPA 3A	EPA 60
Conc. Units	%	%	mag

Time: 15:44 to 16:44

Run Averages

9.7

9.6

176

Pre-run Bias at 15:09

Zero Bias	0.0	0.2	7
Span Bias	10.0	9.8	445
Span Gas	10.1	10.2	458

Post-run Bias at 16:45

Zero Bias	0.0	0.2	9
Span Bias	10.0	9.9	444
Span Gas	10.1	10.2	458

Run averages corrected for the average of the pre-run and post-run bias

9.8

9.9 /

176 /

RUN SUMMARY

Number 6

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Method EPA 3A Conc. Units %	CO ₂ SO ₂ EPA 3A EPA 6C % ppm
-----------------------------	---

Time: 17:14 to 18:14

Run Averages

10.5

8.7

182

Pre-run Bias at 16:45

Zero Bias	0.0	0.2	9
Span Bias	10.0	9.9	444
Span Gas	10.1	10.2	458

Post-run Bias at 18:17

Zero Bias	0.0	0.2	6
Span Bias	10.0	9.9	456
Span Gas	10.1	10.2	458

Run averages corrected for the average of the pre-run and post-run bias

10.7 / 8.9 / 180 /

Number 4

Client: New Indy Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Time	0		CC		S	O_2	
TITLE	mv	%	mv	%	mv	ppm	
		Wit	h NCG's				
14:08	3832	9.7	3669	9.3	1350	129	
14:09	3786	9.6	3720	9.4	1344	128	
14:10	3822	9.7	3713	9.4	1351	129	
14:11	3837	9.8	3716	9.4	1344	128	
14:12	3914	9.9	3687	9.3	1478	141	
14:13	3859	9.8	3744	9.5	1478	141	
14:14	3761	9.6	3843	9.7	1192	113	
14:15	3764	9.6	3838	9.7	1056	99	
14:16	3679	9.4	3920	9.9	1015	95	
14:17	3660	9.3	3940	10.0	1085	102	
14:18	3647	9.3	3957	10.0	1132	107	
14:19	3770	9.6	3837	9.7	1067	100	
14:20	3795	9.6	3812	9.7	1151	109	
14:21	3890	9.9	3723	9.4	1337	127	
14:22	3870	9.8	3748	9.5	1367	130	
14:23	3923	10.0	3694	9.4	1385	132	
14:24	4012	10.2	3603	9.1	1483	142	
14:25	4047	10.3	3575	9.1	1591	153	
14:26	4176	10.6	3453	8.8	1674	161	
14:27	4288	10.9	3346	8.5	1750	168	
14:28	4203	10.7	3396	8.6	1707	164	
14:29	4230	10.7	3354	8.5	1777	171	
14:30	4092	10.4	3479	8.8	1800	173	
14:31	4119	10.5	3462	8.8	1719	165	
14:32	4149	10.5	3433	8.7	1669	160	
14:33	4164	10.6	3415	8.7	1681	161	
14:34	4237	10.8	3345	8.5	1700	163	
14:35	4247	10.8	3336	8.5	1768	170	
14:36	4248	10.8	3333	8.4	1746	168	
14:37	4212	10.7	3368	8.5	1511	145	
14:38	4175	10.6	3403	8.6	1533	147	
14:39	4141	10.5	3438	8.7	1541	148	
14:40	4107	10.4	3472	8.8	1273	121	
14:41	4041	10.3	3530	8.9	1399	133	
14:42	3896	9.9	3669	9.3	1522	146	
14:43	3902	9.9	3666	9.3	1495	143	
14:44	3916	9.9	3653	9.3	1361	130	
14:45	3910	9.9	3660	9.3	1447	138	
14:46	3863	9.8	3699	9.4	1556	149	
14:47	3813	9.7	3747	9.5	1605	154	

Number 4

Client: New Indy Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: VD

Times	0	2	CC	2	S	O_2	
Time	mv	%	mv	%	mv	ppm	
14:48	3748	9.5	3810	9.6	1617	155	
14:49	3830	9.7	3735	9.5	1603	154	
14:50	3805	9.7	3759	9.5	1617	155	
14:51	3747	9.5	3810	9.6	1610	154	
14:52	3859	9.8	3712	9.4	1591	153	
14:53	3824	9.7	3744	9.5	1590	152	
14:54	3865	9.8	3705	9.4	1571	151	
14:55	3893	9.9	3677	9.3	1500	143	
14:56	3872	9.8	3697	9.4	1530	146	
14:57	3804	9.7	3760	9.5	1527	146	
14:58	3818	9.7	3745	9.5	1509	144	
14:59	3788	9.6	3778	9.6	1524	146	
15:00	3806	9.7	3762	9.5	1500	143	
15:01	3864	9.8	3709	9.4	1437	137	
15:02	3759	9.6	3808	9.6	1385	132	
15:03	3745	9.5	3820	9.7	1373	131	
15:04	3751	9.5	3816	9.7	1369	130	
15:05	3769	9.6	3800	9.6	1395	133	
15:06	3821	9.7	3751	9.5	1414	135	
15:07	3816	9.7	3753	9.5	1396	133	
Avgs	3920	10.0	3659	9.3	1475	141	

Number 5

Client: New Indy Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009
Operator: VD

Times	C)2	CC)2	S	O ₂	
Time	mv	%	mv	%	mv	ppm	
15:45	3892	9.9	3697	9.4	1913	185	
15:46	3816	9.7	3764	9.5	1980	191	
15:47	3793	9.6	3787	9.6	2025	196	
15:48	3790	9.6	3793	9.6	2074	201	
15:49	3848	9.8	3740	9.5	1983	191	
15:50	3839	9.8	3747	9.5	1955	189	
15:51	3822	9.7	3764	9.5	1922	185	
15:52	3827	9.7	3757	9.5	1929	186	
15:53	3922	10.0	3668	9.3	1938	187	
15:54	3946	10.0	3641	9.2	1948	188	
15:55	3987	10.1	3603	9.1	1934	187	
15:56	3940	10.0	3646	9.2	1979	191	
15:57	3891	9.9	3698	9.4	2018	195	
15:58	3790	9.6	3794	9.6	1992	192	
15:59	3698	9.4	3880	9.8	2025	196	
16:00	3660	9.3	3914	9.9	2036	197	
16:01	3609	9.2	3960	10.0	2088	202	
16:02	3584	9.1	3988	10.1	2046	198	
16:03	3562	9.1	4010	10.2	2115	205	
16:04	3600	9.2	3972	10.1	2066	200	
16:05	3552	9.0	4016	10.2	1993	192	
16:06	3514	8.9	4054	10.3	1959	189	
16:07	3536	9.0	4032	10.2	1996	193	
16:08	3553	9.0	4013	10.2	1980	191	
16:09	3580	9.1	3990	10.1	1965	190	
16:10	3540	9.0	4030	10.2	1914	185	
16:11	3499	8.9	4083	10.3	1904	184	
16:12	3625	9.2	4016	10.2	1860	179	
16:13	3654	9.3	3998	10.1	1793	173	
16:14	3651	9.3	3999	10.1	1772	171	
16:15	3576	9.1	4072	10.3	1746	168	
16:16	3530	9.0	4116	10.4	1760	169	
16:17	3471	8.8	4176	10.6	1738	167	
16:18	3515	8.9	4134	10.5	1712	165	
16:19	3551	9.0	4101	10.4	1691	162	
16:20	3655	9.3	4004	10.1	1655	159	
16:21	3772	9.6	3892	9.9	1591	153	
16:22	3734	9.5	3929	9.9	1598	153	
16:23	3765	9.6	3908	9.9	1583	152	
16:24	3840	9.8	3832	9.7	1540	147	
16:25	3852	9.8	3818	9.7	1593	153	

Number 5

Client: New Indy Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: **15730.001.009**Operator: **VD**

Time	C)2	CC	2	S	O_2	
Time	mv	%	mv	%	mv	ppm	
16:26	3996	10.1	3682	9.3	1654	159	524
16:27	4017	10.2	3656	9.3	1656	159	
16:28	4062	10.3	3613	9.2	1659	159	
16:29	4119	10.5	3556	9.0	1698	163	
16:30	4062	10.3	3580	9.1	1721	165	
16:31	3889	9.9	3705	9.4	1754	169	
16:32	3903	9.9	3689	9.3	1756	169	
16:33	4016	10.2	3582	9.1	1760	169	
16:34	4122	10.5	3479	8.8	1737	167	
16:35	4106	10.4	3490	8.8	1712	165	
16:36	4121	10.5	3475	8.8	1727	166	
16:37	4015	10.2	3577	9.1	1723	166	
16:38	4102	10.4	3496	8.9	1706	164	
16:39	4188	10.6	3415	8.7	1703	164	
16:40	4193	10.6	3404	8.6	1701	163	
16:41	4252	10.8	3353	8.5	1665	160	
16:42	4203	10.7	3378	8.6	1684	162	
16:43	4155	10.5	3410	8.6	1671	160	
16:44	3952	10.0	3603	9.1	1622	156	
Avgs	3821	9.7	3786	9.6	1827	176	

Number 6

Client: New Indy Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: **15730.001.009**Operator: **VD**

J				•			
	C)2	CC)2	S	D ₂	
Time	mv	_ %	mv	%	mv	ppm	
17:15	4204	10.7	3370	8.5	1719	165	
17:16	4217	10.7	3362	8.5	1703	164	
17:17	4375	11.1	3216	8.2	1686	162	
17:18	4421	11.2	3170	8.0	1744	168	
17:19	4387	11.1	3201	8.1	1796	173	
17:20	4265	10.8	3317	8.4	1796	173	
17:21	4239	10.8	3340	8.5	1786	172	
17:22	4175	10.6	3399	8.6	1784	172	
17:23	4174	10.6	3393	8.6	1829	176	
17:24	4143	10.5	3421	8.7	1818	175	
17:25	4122	10.5	3438	8.7	1856	179	
17:26	4075	10.3	3477	8.8	1889	182	
17:27	4098	10.4	3460	8.8	1888	182	
17:28	4228	10.7	3335	8.5	1901	183	
17:29	4213	10.7	3345	8.5	1901	183	
17:30	4195	10.6	3362	8.5	1879	181	
17:31	4190	10.6	3366	8.5	1861	179	
17:32	4142	10.5	3412	8.6	1911	184	
17:33	4140	10.5	3414	8.7	1907	184	
17:34	4152	10.5	3405	8.6	1867	180	
17:35	4222	10.7	3338	8.5	1888	182	
17:36	4094	10.4	3459	8.8	1950	188	
17:37	4114	10.4	3448	8.7	1912	184	
17:38	4207	10.7	3357	8.5	1884	182	
17:39	4227	10.7	3336	8.5	1900	183	
17:40	4229	10.7	3334	8.5	1900	183	
17:41	4198	10.7	3364	8.5	1943	187	
17:42	4210	10.7	3353	8.5	1929	186	
17:43	4144	10.5	3415	8.7	1911	184	
17:44	4206	10.7	3355	8.5	1960	189	
17:45	4183	10.6	3376	8.6	1973	190	
17:46	4126	10.5	3429	8.7	1938	187	
17:47	4037	10.3	3512	8.9	1945	188	
17:48	4102	10.4	3455	8.8	1926	186	
17:49	4136	10.5	3424	8.7	1918	185	
17:50	4127	10.5	3430	8.7	1894	183	
17:51	4085	10.4	3472	8.8	1936	187	
17:52	4008	10.2	3548	9.0	1945	188	
17:53	3995	10.1	3560	9.0	1950	188	
17:54	4081	10.4	3488	8.8	1896	183	
17:55	4092	10.4	3468	8.8	1899	183	

Number 6

Client: New Indy Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: **15730.001.009**Operator: **VD**

	С)2	CC)2	S	O ₂	
Time	mv	- %	mv	%	mv	ppm	
17:56	4040	10.3	3517	8.9	1897	183	
17:57	4039	10.3	3522	8.9	1858	179	
17:58	4016	10.2	3543	9.0	1893	183	
17:59	4000	10.2	3561	9.0	1896	183	
18:00	4058	10.3	3506	8.9	1865	180	
18:01	4151	10.5	3417	8.7	1845	178	
18:02	4239	10.8	3336	8.5	1862	179	
18:03	4211	10.7	3356	8.5	1860	179	
18:04	4188	10.6	3380	8.6	1888	182	
18:05	4180	10.6	3388	8.6	1887	182	
18:06	4281	10.9	3293	8.3	1870	180	
18:07	4157	10.6	3408	8.6	1902	183	
18:08	4051	10.3	3512	8.9	1952	188	
18:09	3972	10.1	3586	9.1	1933	187	
18:10	4044	10.3	3524	8.9	1964	190	
18:11	4040	10.3	3530	8.9	1993	192	
18:12	4162	10.6	3410	8.6	1950	188	
18:13	4018	10.2	3544	9.0	1957	189	
18:14	3953	10.2	3607	9.1	1996	193	
	4146	10.5	3418	8.7	1886	182	
Avgs	4140	10.5	3410	0.7	1000	102	

Number 4

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Start Time: 13:10

 O_2

Method: EPA 3A Span Conc. 20.0 %

		Bi	as Resu	lts	
Standard	Cal.	Response	Bias	Difference	Error
Gas	%	mv	%	%	% Status
Zero	0.0	-44	0.0	0.0	0.0 🗸 Pass
Span	10.1	3947	10.0	-0.1	-0.5 Pass
		Cali	bration	Drift	
Standard	Initial*	Fina	al	Difference	Drift
Gas	%	mv	%	%	% / Status
Zero	0.1	-44	0.0	-0.1	-0.5 / Pass
Span	10.1	3947	10.0	-0.1	-0.5 Pass
-	*Bias No. 3	3			

CO₂
Method: EPA 3A
Span Conc. 19.8 %

		Bi	as Resu	lts		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.1	38	0.2	0.1	0.5	/ Pass
Span	9.9	3842	9.7	-0.2	-1.0	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	% /	Status
Zero	0.2	38	0.2	0.0	0.0	Pass
Span	9.8	3842	9.7	-0.1	-0.5	Pass
•	*Bias No. 3	3			<i>y</i>	

Number 4

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Start Time: 13:10

SO₂

		Bi	as Resu	lts	
Standard Gas Zero	Cal. ppm 1	Response mv 108	Bias ppm 5	Difference ppm 4	Error % / Status 0.4 / Pass
Span	457	4570	448	-9	-1.0 Pass
		Cali	bration	Drift	
Standard	Initial*	Fina	al	Difference	Drift
Gas	ppm	mv	ppm	ppm	% Status
_	7	108	5	-2	-0.2 / Pass 0.2 / Pass
Zero		100	0	_	,

Number 5

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Start Time: 15:09

 O_2

Method: EPA 3A Span Conc. 20.0 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	% /	Status
Zero	0.0	-46	0.0	0.0	0.0 ,	Pass
Span	10.1	3944	10.0	-0.1	-0.5	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.0	-46	0.0	0.0	0.0	/ Pass
			400	0.0	0.0	D
Span	10.0	3944	10.0	0.0	0.0	Pass

CO₂

Method: EPA 3A Span Conc. 19.8 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.1	69	0.2	0.1	0.5	Pass
Span	9.9	3888	9.8	-0.1	-0.5	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.2	69	0.2	0.0	0.0 🗸	Pass
Span	9.7	3888	9.8	0.1	0.5	Pass
Opan						

Number 5

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Project Nu

Project Number: 15730.001.009

Operator: VD

Date: 13 Oct 2021

Start Time: 15:09

Calibration 1

SO₂

		Bi	as Resu	lts		
Standard Gas	Cal. ppm	Response mv	Bias ppm	Difference ppm	Error /	Status
Zero	1	130	7	6	0.7	Pass
Span	457	4538	445	-12	-1.3	Pass

		Ca	libration	Drift	
Standard	Initial*	Fir	nal	Difference	Drift
Gas	ppm	mv	ppm	ppm	% / Status
Zero	5	130	7	2	0.2 / Pass
Span	448	4538	445	-3	-0.3 🗸 Pass
-	*Bias No. 4				

Number 6

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Start Time: 16:45

 O_2

Method: EPA 3A Span Conc. 20.0 %

		Bi	as Resu	lts		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.0	-53	0.0	0.0	0.0	Pass
Span	10.1	3948	10.0	-0.1	-0.5	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.0	-53	0.0	0.0	0.0	Pass
Span	10.0 *Bias No. 5	3948	10.0	0.0	0.0	Pass
	DIGG 140. 0	,				

CO₂ Method: EPA 3A Span Conc. 19.8 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.1	66	0.2	0.1	0.5	Pass
Span	9.9	3891	9.9	0.0	0.0	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	% /	Status
Zero	0.2	66	0.2	0.0	0.0	Pass
Span	9.8	3891	9.9	0.1	0.5	Pass
•	*Bias No. 5					

Number 6

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Proje

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Calibration 1

Start Time: 16:45

SO₂

		Bi	as Resu	lts	
Standard Gas Zero	Cal. ppm 1	Response mv 149	Bias ppm 9	Difference ppm 8	Error % Status 0.9 Pass
Span	457	4529	444	-13 	-1.4 Pass
		Cali	bration	Drift	
Otanaland	Initial*	Fina	al	Difference	Drift
Standard	milliai				
Standard Gas	ppm	mv	ppm	ppm	% / Status
Standard Gas Zero		mv 149	ppm 9	ppm 2	% Status 0.2 Pass

Number 7

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: VD

Date: 13 Oct 2021

Start Time: 18:17

 O_2

Method: EPA 3A Span Conc. 20.0 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.0	-65	0.0	0.0	0.0	Pass
Span	10.1	3943	10.0	-0.1	-0.5	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.0	-65	0.0	0.0	0.0	Pass
Span	10.0	3943	10.0	0.0	0.0	Pass
•	*Bias No. 6					

CO₂

Method: EPA 3A Span Conc. 19.8 %

Bias Results							
Standard	Cal.	Response	Bias	Difference	Error		
Gas	%	mv	%	%	%	Status	
Zero	0.1	68	0.2	0.1	0.5 🗸 /	Pass	
Span	9.9	3929	9.9	0.0	0.0	Pass	
		Cali	bration	Drift			
Standard	Initial*	Fina	al	Difference	Drift		
Gas	%	mv	%	%	% ,	Status	
Zero	0.2	68	0.2	0.0	0.0	Pass	
Span	9.9	3929	9.9	0.0	0.0	Pass	
	*Bias No. 6						

Number 7

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Start Time: 18:17

SO₂

Method: EPA 6C Span Conc. 911 ppm

		Bi	as Resu	Its		
Standard Gas	Cal. ppm	Response mv	Bias ppm	Difference ppm	Error	Status
Zero	1	115	6	5	0.5	/ Pass
Span	457	4650	456	-1	-0.1	Pass
		Cal	ibration	Drift		
Standard	Initial*	Fin	al	Difference	Drift	
Gas	ppm	mv	ppm	ppm	% ,	Status
Zero	9	115	6	-3	-0.3	/ Pass
Span	444	4650	456	12	1.3	/ Pass
•	*Bias No. 6	3				5.4

CALIBRATION DATA

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Start Time: 07:38

 O_2

Method: EPA 3A

Calibration Type: Linear Regression

	Calibration Results	
%	Cylinder ID	Result, mv
Zero /	-	-38
10.1	EB0062273	3962
20.0	CC335419	7937
Zero 10.1 20.0	EB0062273	-38 3962

Curve Coefficients

Slope 398.9 Intercept -53 **Corr. Coeff.** >0.9999

CO₂
Method: EPA 3A

Calibration Type: Linear Regression

% Zero /	Calibration Results Cylinder ID -	Result, mv 32	
10.2	EB0062273	3892	
10.2 J 19.8 J	CC335419	7913	
	Curve Coefficients		
Slope	Intercept	Corr. Coeff.	
397.7	/ -27	/ 0.9996	1

CALIBRATION DATA

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Start Time: 07:38

SO₂

Method: EPA 6C

Calibration Type: Linear Regression

Calibration Results								
ppm	Cylinder ID	Result, mv						
Zero //	-	61						
	EB0108003	4654						
911 /	CC259060	9230						

Curve Coefficients

Slope 10.07 Intercept 55 **Corr. Coeff.** >0.9999

CALIBRATION ERROR DATA

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Start Time: 07:38

 O_2

Method: EPA 3A Span Conc. 20.0 %

Slope 398.9

Intercept -52.9

Standard %	Response	Result	Difference %	Error	Status
Zero	-38	0.0	0.0	0.0	Pass
10.1	3962	10.1	0.0	0.0	Pass
20.0	7937	20.0	0.0	0.0	Pass

CO₂

Method: EPA 3A Span Conc. 19.8 %

Slope 397.7

Intercept -27.1

Standard %	Response mv	Result %	Difference %	Error	Status
Zero	32	0.1	0.1	0.5	Pass
10.2	3892	9.9	-0.3	-1.5	Pass
19.8	7913	20.0	0.2	1.0	Pass

SO₂

Method: EPA 6C Span Conc. 911 ppm

Slope 10.07

Intercept 55

Standard ppm Response mv Result ppm ppm ppm Zero 61 1 1 458 4654 457 -1 911 9230 911 0	Error % 0.1 / -0.1 / 0.0	Status Pass Pass Pass
--	--------------------------------------	-----------------------

METHODS AND ANALYZERS

Client: New Indy

Project Number: 15730.001.009

Operator: VD

Location: Catawba, SC

Date: 13 Oct 2021

Source: No. 1 Combination Boiler

File: C:\Data\211013 New Indy Catawba No. 1 Combination Boiler.cem Program Version: 2.2, built 3 Jul 2020 File Version: 2.04

Computer: WSTRLXX-PC Trailer: 88
Analog Input Device: MCC USB-1608G

Channel 1

Analyte O₂

Method **EPA 3A**, Using Bias Analyzer Make, Model & Serial No. **CAI 600 s/n: E08008-M**

Full-Scale Output, mv
Analyzer Range, %
Span Concentration, %
10000
20.0

Channel 2

Analyte CO₂

Method **EPA 3A**, Using Bias Analyzer Make, Model & Serial No. **CAI 600 s/n: E08008-M**

Full-Scale Output, mv

Analyzer Range, %

Span Concentration, %

10000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

Channel 5

Analyte SO₂

Method EPA 6C, Using Bias

Analyzer Make, Model & Serial No. **Teledyne T100H SN410** Full-Scale Output, mv **10000**

Analyzer Range, ppm
Span Concentration, ppm
1000
911

No. 2 COMBINATION BOILER (CONDITION 1: NCG AND SOG GASES)

New Indy Catawba, SC 15730.001.009 No. 2 Combination Boiler Condition 1: NCGs & SOGs

EMISSION CALCULATIONS

Date Time Began Time Ended		Run 1 10/14/21 830 / 930 /	Run 2 10/14/21 1026 / 1126 /	Run 3 10/14/21 1222 1322	Mean
Volumetric Flow Rate, (Qs), DSCFM BWS % Oxygen		0.168 🗸	1.43E+05 0.194 10.1	0.160	1.39E+05 0.174 10.8
Sulfur Dioxide Concentration, ppm Emission Rate, lb/hr	MW= 64.06	275.0 × 383.7	262.0 373.7	286.0 V 385.4	274.3 380.9

New Indy Catawba, SC 15730.001.009

No. 2 Combination Boiler

Condition 1: NCGs & SOGs

ISOKINETIC CALCULATIONS

Run Number		1	2	3	Mean
Date		10/14/21 🗸	10/14/21 🗸	10/14/21	
Time Began		840 🗸	1026 🗸	1218	
Time Ended		955 🗸	1146	1340 🖊	
	INPUT DAT	ΓΑ		/	
Sampling Time, min	(Theta)	64.0 ✓	64	64	64
Stack Diameter, in.	(Dia.)	120.00 🗸	120.00	120.00	120.00
Barometric Pressure, in. Hg	(Pb)	29.65	29.65	29.65	29.65
Static Pressure, in. H2O	(Pg)	-1.10	-1.10 🗸	-1.10 🖊	-1.10
Pitot Tube Coefficient	(Cp)	0.84 🗸	0.84 🗸	0.84	0.84
Meter Correction Factor	(Y)	1.0000 🗸	1.0000 🗸	1.0000	1.0000
Orifice Calibration Value	(Delta H@)	2.0490 /	2.0490 🗸	2.0490	2.0490
Nozzle Diameter, in.	(Dn)	0.250 🗸	0.250	0.250	0.250
Meter Volume, ft ³	(Vm)	38.399	38.625	39.255	38.760
Meter Temperature, °F	(Tm)	75.1	93.3	96.6	88.3
Meter Temperature, °R	(Tm-R)	535.1	553.3	556.6	548.3
Meter Orifice Pressure, in. H2O	(Delta H)	1.300	1.300 🗸	1.300	1.300
Ave Sq Rt Orifice Press, (in. H2O)^1/2	((Delta H)½)avg)	1.140	1.140 🗸	1.140	1.140
Volume H2O Collected, mL	(Vlc)	161.9 🗸	186.9 -	149.7	166.2
CO2 Concentration, %	(CO2)	8.2	9.5	7.5	8.4
O2 Concentration, %	(O2)	10.8	10.1	11.5	10.8
Ave Sq Rt Velo Head, (in. H2O) [^] / ₂	((Delta P)½)avg)	0.830	0.879	0.795	0.835
Stack Temperature, °F	(Ts)	463.4	477.3	465.4	468.7
Stack Temperature, °R	(Ts-R)	923.4	937.3	925.4	928.7
	CALCULATED	DATA			
Nozzle Area, ft ²	(An)	3.41E-04	3.41E-04	3.41E-04	3.41E-04
Stack Area, ft	(As)	78.54 🗸	78.54 🗸	78.54	78.54
Stack Pressure, in. Hg	(Ps)	29.57	29.57	29.57	29.57
Meter Pressure, in. Hg	(Pm)	29.75	29.75	29.75	29.75
Standard Meter Volume, tt	(Vmstd)	37.652	36.633	37.004	37.096
Standard Water Volume, tt	(Vwstd)	7.621	8.797	7.046	7.821
Moisture Fraction (Measured)	(BWS)	0.168	0.194	0.160	0.174
Moisture Fraction (lower sat/meas)	(BWS)	0.168	0.194	0.160	0.174
Mol. Wt. of Dry Gas, lb/lb-mole	(Md)	29.74	29.92	29.66	29.78
Mol. Wt. of Stack Gas, lb/lb-mole	(Ms)	27.77	27.61	27.79	27.73
Average Stack Gas Velocity, ft/sec	(Vs)	63.20	67.63	60.56	63.79
Stack Gas Flow, actual, tt*/min	(Qa)	297803	318693	285372	300623
Stack Gas Flow, Std , tt*/min	(Qs)	139897	143007	135114	139339
	(40)	137071	115007	133117	. 57557
Calibration check	(Yqa)	0.9929	1.0006	0.9920	0.995
Percent difference from Y	V = 4-7				-0.48%

Meth	Console ID	Meter Corr., Y	Console ∆H@	Probe ID/Length	Liner Material	Pitot ID/Coeff P284
eld Data	New Indy	Catawba, SC	Source No. 2 Combination Boiler	Stack	15730.001.009	
Isokinetic Field Data	Client	Location/Plant	Source	Sample Location	W. O. Number	Run Number

				Final	0.000	1111	8,000				Channeline	2 2 2																				1	1
	Ī	4	cks	Initial							Ž	}														,			>	scf scf	Qs, dscfm	% Isokinetic	Calculated by
Page 1 of 1		K Factor N/A	Leak Checks	Ini	0.003		1 100	ni/o	N/A		SAMPLE	VACUUM (in Hg)		1	1	1	1	-)	-	-	1	1)	1	1	1	-	Max Vac	111	-	\$1%	Calcu
					Volume, ft ³	@ Vac., in. Hg	Pitot				IMPINGER	TEMP (°F)	99	花	53	53	2.5	ts	ts	58	63	52	25	5.8	9	09	63	19	Max Temp	45 5	Thermocouple Check	Meter Temp., °F	Ket. Iemp, 'F
		in. Hg - BAR-14	in. H ₂ O					Filter ID	Sample ID		FILTER	TEMP (°F)	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	MipMax	7	Ther	Meter	שא
	12 05	65		150,5 mL	11.4 9		78.54 ft ²		s 16		FILTER	世	252	255	358	358	255	458	757	tse	355	352	357	254	255	356	286	lass	Min/Max	252/258	yrite M3A		
0)	- amb		1				Stack Area 7		Total Traverse Points		PROBE) IEMP(F)	260	255	260	19%	797	258	259	241	263	264	198	458	255	tse	255	754	Min/Max U	अरम /जल	by Orsat Fyrite M3A	Leak Check, Pre-run	Post-run
oisture	Ambient Temn	Baro. Pressure*	Static Pressure	Impinger Gain	Silica Gel Gain		Stac	0.250	tal Trav		DGM	TEMP (%)	89	89	69	69	站	74	4	35	H	tt	28	28	31	8	83	83 /	<u>_</u>	75.12	02/CO2	Leak Cut	
A 4, M	1	1	Merch of			4	3	0.250	in.		DGM INLET	TEMP (°F)	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	x /	Avg	3	n 10F		
Method: EPA 4, Moisture	A025	1.000	2.0549	PR-5Z	22	0.84	A025	0.250	25	1.75	STACK	(<u>.</u>	460	462	462	460	463	463	462	463	462	494	404	463	466	467	467	1 467	Avg Ts	463.484	Flue Gas Composition 10 P	"o opino	"מאומבי אמ
Meth		rr., Y	NH@	ength		oeff. P284		ams. 0.25	0	developed VAC	READING (ft ³)	474.050	476.5	438.7	1.186	983.5	985.9	h88h	9.06	493.1	£'5612	948.0	4.000	7.8	2.5	7.7	10.0	।य-नसन	Total Volume	38,399	Flue Gas C	Carbon Dioxide %	Moisture %
	Console ID	Meter Corr., Y	Console ∆H@	Probe ID/Length	Liner Material	Pitot ID/Coeff.	Thermo ID	Nozzle ID/Diams.	Avg. Nozzle Diam.	ORIFICE	PRESSURE	(in. H ₂ O)	1.3	1.3	1,3	1.3	1.3	1,3:	1.3	1.3	6.3	1,3	1.3	1.3	1.3	1.3	1.3	1.3	Avg oh	6.1	Avg VAH	1	7
	Indy	oa, SC	2 Combination Boiler	CK 04 000	600.100		-17	BE	min.	VELOCITY	PRESSURE	(in. H ₂ O)	.80	.86	.85°	7Ł.	ot.º	18.	.85	ht.	700	, 54	,54	.50	.73		.51	. 49	Avg and	. M50 V	Tap= ,82986		1 336
Isokinetic Field Data	New Indy	Catawba,	No. 2 Combin	15730 001 000	137.30.0			RS/	3		TIME (plant time)	04:8			0													4:55	it port elevation		5	Comments	•
stic Fie	Client			W O Number	Mainber	Kun Number	Date	l est Personnel	Sample Time	SAMPLE TIME	(min)	0	4	80	12	16	20	24	28	32	36	40	44	48	52	56	09	64	"Barometric Pressure is at port elevation			3	Integrated Air Services
Isokine		Locati	O composition of	M O Number		Kun	H	lest Pe	Samp		POINT	ÖN N	A-1	2	е	4	B-1	2	т	4	C-1	2	8	4	D-1	2	е п	4	Baromet		FIN	273	Integrated

Calculated by QC by

Result

Carbon Dioxide, % Moisture, %

-
10
+
ata
Ö
7
0
Fiel
-
1.1
C
4
(D)
_
kinetic
0
0
S

				_			1			
					Final	0,000	4"	9000		
0f 1			N/A	LEAK CHECKS	Initial	0.000	121,	2000		
Page 1 of 1	083	K Factor	100	LEGR		1	vac., in. Hg		MA	N/A
	L					Volume, #	@ Vac.,	FITOL	Sample ID	al old
		Baro Pressure* 36 1/2 in Hothers	A C	20					Sam	
	-0 ·	- L	E H	0 00	N	2 2	EA 6.2	=	16	The second second second
	7	Te. *91	III A				Stack Area 78 EA a2	0.	e Points	TANDONG MANAGER
sture	Amhient Temn	O Pressi	Static Pressure	Imninger Gain	Silica Gel Gain		Ctock A	0.250	in. Total Traverse Points	Town to the state of the state
14, Mo	An	/Bar	Sta	l l		5		0.250	n. Tota	The State of the S
Method: EPA 4, Moisture	A025	000	2.0949	PR-57	SS	0.84	A025	0.250 0.250		
Metho						P284		0.25	0.2	
	Console ID	Meter Corr., Y	Console ∆H@	Probe ID/Length _	Liner Material	Pitot ID/Coeff	Thermo ID	/Diams.	e Diam.	
	Col	Meter	Conso	Probe ID	Liner	Pitot II	The	Nozzle ID/Diams.	Avg. Nozzle Diam.	THE RESERVE OF THE PARTY OF THE
		C	n Boiler		60				A	
ata	New Indy	Catawba, SC	Source No. 2 Combination Boiler	Stack	15730.001.009	2	14-21	RS / BE	min.	7.0
eld D		S	No. 2 Cc		157		10-14-21		13	יו טרו
Isokinetic Field Data	Client	Location/Plant	Source	Sample Location	W. O. Number	Run Number	Date	Test Personnel	Sample Time (
sokin		Local		Sample	W. O.	Run		Test P	Sam	

	STS																					
The second secon	COMMENTS																			1	Vm-std:	Qs, dscfm
HIN	SAMPLE TRAIN	(In Hg)		-	1	1	1	1	-		-			, ,	- 7	1 7	5 0	4 7	0	Max Vac	, (
	IMPINGER	TEMP (°F)	0	65	88	23	20	10		2	13	62	177	19 3	3 1	20	200	22/5	10	Max Temp	65	Thermocouple Check
The same of the sa	FILTER	TEMP (°F)	×		×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	MinMax	7	The
William Control National Property Spiness	FILTER BOX	TEMP (°F)	27.0	454	254	255	254	25.7	256	256	255	250	265	256	256	755	252	hsc	1261	Min/Max	251/254	ite M3A
STORY NOT THE PROPERTY OF	PROBE TEMP (°E)		100	424	255	754	255	253	455	454	755	754	750	256	255	355	452	256	256	Min/Max v	253/254	by Orsat Fyrite M3A
Angeles Spiller San San San	DGM	TEMP (°F)	do	2	90	-6	42	47	93	93	44	93	76	116	hb	95	910	96	96	1 8	43,35 12	02/CO2 b
THE PERSON NAMED IN	DGM	TEMP (°F)	×		×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	Avg	METO	u Velo
S. S	STACK	(£)	427		434	478	842	944	44	844	tth	468	इसग्	446	Hich	23	487	184	182	Avg Ts	ナナナップ	ompositio
THE RESERVE OF THE PARTY OF THE	DRY GAS METER READING (ft³)	12.575	6 171		4.41	14.8	22.2	24.7	77.1	29,7	31.9	74.3	36.7	39.1	41.6	0.44.0	465	48.8	51.200	Total Volume	38.675	Flue Gas Composition
· 1500 1100 1100 1100 1100 1100 1100 110	ORIFICE PRESSURE AH	(in. H ₂ O)	1.3	6.	1.5	1.3	1.3	1,3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	Avg AH	1.3	Avg VAH
	VELOCITY PRESSURE Ap	(in. H ₂ O)	,90	00		000	末	90	.95	. 44	.82 HZ PS	,82	1,76	.58	.54	48.	. H	F	.56	Avg VAp	34848	Aug A P= : 77878
אטעוני	TIME TIME (plant time)	2.0																	1:40	port elevation		
	SAMPLE TIME (min)	0	4	8	(12	16	20	24	28	32	36	40	44	48	52	999	09	64	*Barometric Pressure is at port elevation		ス 世 型 し 国 に い に に い に に に に に に に に に に に に に
是 · · · · · · · · · · · · · · · · · · ·	TRAVERSE POINT NO.		A-1	2	C	7)	4	B-1	2	8	4	C-1	2	3	4	D-1	2	8	4	*Baromet		EMW

Integrated Air Services

Calculated by QC by

Result

Post-run

Carbon Dioxide, % Moisture, %

Oxygen, %

L'HOP

AB 101

Leak Check, Pre-run

Q_s, dscfm % Isokinetic

Thermocouple Check Meter Temp., °F Ref. Temp, °F

		- 0	900		COMMENTS																		Vm-std,	Qs. dscfm	% Isokinetic		15730. #1-2 C Emission
Page 1 of 1	Factor NA Leak Checks	0	119 (5 m)	8/N	SAMPLE	(in Hg)		1	3 3 1	1	1	1	1	-	1	-)	1		-	1	Max Vac		%	Calculated by	
	X	Volume, ft ³	@ vac., in. rig	Filter ID Sample ID	IMPINGER	TEMP (°F)	49	19	59	59	58	58	2%	ts	62	9	90	9	19	64	65	. 65	Max Temp	Thermocouple Check	Meter Temp., °F	Ref. Temp, °F	Result
	0 ²		i	Filter ID Sample	FILTER	TEMP (°F)	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	Min/Max	The	Met	м	
		34.4 ml	78.54 ft ²	16	FILTER BOX	TEMP (°F)	355	255	255	252	254	456	355	H54	754	356	754	354	754	754	754	754		rite M3A			
			Stack Area 78	Total Traverse Points	PROBE		754	754	255	254	253	251	£52	355	255	358	754	355	255	754	355	355	Min/Max v	by Orsat Fy	Leak Check, Pre-run	Post-run	
oisture	Ambient Temp. Baro. Pressure* Static Pressure	Impinger Gain Silica Gel Gain	Stack	otal Trave	Water Transport	TEMP (°F)	96	960	96	48	48	918	96	46	96	96	96	96	th	44	th	th	T. <16,1025	02/002	Leak Che		
A 4, M	43		0.050	in. To	DGM	TEMP (°F)	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	Avg	u			
Method: EPA 4, Moisture	1.000 2.0549	SS 0.84	A025	0.250	STACK	(°F)	473	たたか	444	462	462	465	十十	467	194	मिल्स	463	462	44	461	405	1907	Avg Ts	ompositio		oxide, %	0
Meth		D284	300	0.6	DRY GAS METER READING (ft³)	51.520	54.0	56.4	540	61.3	63.8	663	48.7	71,1	73.3	76.1	78.5	81.0	83.4	85.4	484	36F. OP	Total Volume	Flue Gas Composition	Oxygen, %	Carbon Dioxide, %	Moisture, %
	Console ID Meter Corr., Y Console △H@	Liner Material Pitot ID/Coeff	Thermo ID	Avg. Nozzle Diam.	ORIFICE PRESSURE AH	(in. H ₂ O)	1.3	1.3	1,3	1,3	1.3	1.3	1.3	6.1	1.3	1.3	1.3	[.3	1.3	1.3	1.3	1.3	Avg ΔH	Avg VAH	19041	CH.	1010
Pow.	New Indy Catawba, SC 2 Combination Boiler Stack	001.009	-21 BF	n.	VELOCITY PRESSURE	(in. H ₂ O)	79.	45'	15.	, 50	001:	. 28.	Łt'	he.	HE.	1to	٥٤.	90)	89.	.53	th.	, 43	ANG VAP ,	AUG DP - 6375		suus	
d Data	New Indy Catawba, SC o. 2 Combination	15730.001.009 3	16-14-21 RS/RE	104	CLOCK TIME (plant time)	12:18			•													_		Pung Phys	C	NS Comments	səo
tic Fiel	Client Location/Plant Source No.	W. O. Number Run Number	Date	Sample Time	SAMPLE TIME (min)	0	4	80	12	16	20	24	28	32	36	40	44	48	52	56	09	64	Barometric Pressure is at port elevation			SOLUTIONS	Integrated Air Services
Isokinetic Field Data	Client Location/Plant Source	W. O. I Run	Date Test Personnel	Samp	TRAVERSE SOUNT		C A-1	2	8	4	B-1	2	е	4	A &-1	2	6	4	0-1	2	8	4	Barometi	CE'AM	177°		megrared

Sample Recovery Field Data

			Method: EPA	4, Moisture				
Location	Client	New Indy Catawba, SC			Source	No. 2 Co	mbination	Boiler
			ingers 1 - 3 measu	rements in gran		157	30.001.00	3
Contents			ELVER N					
					Rec			
						Analysi	162	
0. 1. 1	1	2	T			Imp.Total	Silica Gel	Total
			2				grams	医流流
		763-0	567.4			100	806.9	
				1		/	745.5	/
Gain	PS 395. 383	90 /	esse7.4222	V	AV.	150.5	11.40	161.9
Imi	oinger Color	clear	4.		Labled?			
Silica G	el Condition	Good						
		W.			W. B.			
Run No.	2		Sample Date	Source No. 2 Combination Boiler W.O. Number 15730.001.009 1 - 3 measurements in grams Sample Date 10-14-21 Recovery Date 10-14-21 Filter ID 157.9 Impingers 3 Imp. Total Silica Gel Total grams Sealed? Sealed? Impingers 3 Imp. Total Silica Gel Total grams 4 Sealed? Sealed? 177.8 9.1 186.9 Impingers 3 Imp. Total Silica Gel Total grams 5 Sealed? Sealed? 177.8 9.1 186.9 Impingers 3 Imp. Total Silica Gel Total grams 5 Sealed? Sealed? Sealed?				
Sample ID	Cilient New Indy Source No. 2 Combination Bo To To To To To To To							
15.2	Partie		In		300			
Contents	1	2	3			Imp.Total	Total Control	Total
	Que Co	220	61					
	CONTRACTOR OF THE PARTY OF THE		THE REPORT OF THE PARTY OF THE		175		7.5	
							806.9	
		26.8	3.2			177.8	4.1	186.9
					Labled?			
Silica G	el Condition				Sealed?			
								THE STATE OF
Run No.	3		Sample Date	10-14-21	Reco	very Date	10-14	-21
Sample ID			Filter ID	N/A		Analyst	RS	
	4		ln			466		
Contents		2	3	TO SECULIAR		Imp.Total	V-5	Total
	889 n	7740	Qu.				TO STATE OF THE ST	
		HIR CONTROL OF STREET OF STREET, STREE						
	/							
	THE RESIDENCE OF THE PARTY OF T	16.4	1.4 /			139.9	9.8	149.7
Contents								

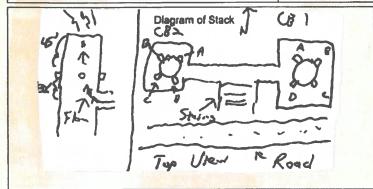
Check COC for Sample IDs of Media Blanks

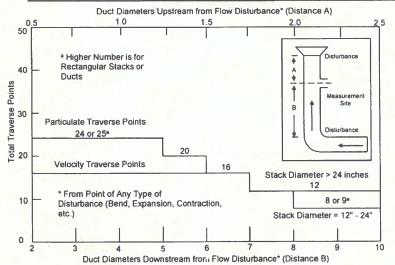
Sealed?

Silica Gel Condition

Sample and Velocity Traverse Points - Method 1

New Indy Source No. 2 Combination Boiler Client Loaction/Plant Catawba, SC W.O. Number 15730.001.008 Operator Date ☑ Circular Rectangular **Duct Type** ☐ Particulate Traverse Traverse Type ✓ Velocity Traverse ■ Stratification Traverse


Traverse	Type
Depth, far wall to outside of	port (in) = C 129
Port Depth (in) = D	9
Depth of Duct, diameter (in)	= C - D 120
Area of Duct (ft3)	78.54
Number of Ports	4
Traverse Points per Port	4


Rectangular Ducts Only	
Width of Duct (in)	
Equivalent Diameter (in)	

Total Traverse Points

		Distance from	Distance from
Traverse		Inside Duct	Outside of
Point	% of Duct	Wall (in)	Port (in)
1	3.2	3.9	12.9
2	10.5	12.6	21.6
3	19.4	23.3	32.3
4	32.3	38.8	47.8

Flow Disturbances Upstream - A (ft) 45				
Upstream - A (ft)	45			
Downstream - B (ft)	32			
Upstream - A (duct diameters)	4.5			
Downstream - B (duct diameters)	3.2			

				Т	raver	se Po	int Lo	ocatio	n % (of Sta	ck - C	Circula	ır	
						No	ımbei	of Tr	avers	e Poir	ts	16.		
			1	2	3	4	5	6	7	8	9	10	11	12
Ŧ		1		14.6		6.7		4.4		32		2.6		2.1
٢		2	320	85.4	前層	25.0		14.6	MAG	10.5	Mark .	8.2	7773	8.7
а		3				75.0		29.6		19.4	17	14.6		11.8
v e	L 0 C	4	10	132		93.3		70.4		32.3		22.6		17.7
Г		5						85 4		67.7		34.2		25.0
s	а	6		1540		5211	W. 5	95.8	303	80.6	100	65.8		35,8
е	t	7							11/16	89.5		77.4		64.4
Р	0	8	2000		151			No. 14		96.8	Party.	85 4		75.0
0	n	9					71.		18			91.8		82.3
i		10	5 10			1000	No.	報說	77.34		11.12	97.4	1000	88.2
n		11						LI						93.3
t		12	THE P	Man and a second	Edg.	1724	100	1100		15 (S)		1129	7917	97.9

				Tra	verse	Poin	t Loc	ation	% of	Stack	- Rec	tangı	ılar	
						N	umber	of Tr	avers	e Poin	its			ļ.
			1	2	3	4	5	6	7	8	9	10	11	12
т		1		25.0	16.7	12.5	10.0	8.3	7.1	6.3	5.6	5.0	4.5	4.2
r		2	126	75.0	50.0	37.5	30.0	25.0	21.4	18.8	16.7	15.0	13.6	12.5
а		3	wini	HEIR	83.3	62.5	50.0	41.7	35.7	31.3	27.8	25.0	22.7	20.8
v e	L	4	3,00	g Na	A K	87.5	70.0	58.3	50.0	43.8	38.9	35.0	31.8	29.2
г	0	5	Total Control		W.		90.0	75.0	64.3	56.3	50.0	45.0	40.9	37.5
s	а	6		100	102	12		91.7	78.6	8.88	61.1	55.0	50.0	45.8
е	t	7		Tripo	T				92.9	81.3	72.2	65.0	59.1	54.2
Р	1	8	10		35/31	157	12.00	No.		93 8	83.3	75.0	68.2	62.5
0	o n	9				15	9.1				94.4	85.0	77.3	70.8
i		10	(HO.C.)	272 Mg	100	To the		1	起機			95.0	88.4	79.2
n		11	101			M.							95.5	87.5
t		12	View.		1	Vision Vision	1500	15.2	洲龍				30	95.8

Stack	Points
& N	latrix
9 -	3 x 3
12 -	4 x 3
16 -	4 x 4
20 -	5 x 4
25 -	5 x 5
30 -	6 x 5
36 -	6 x 6
42 -	7 x 6
49 -	7 x 7

Tape measure ID

RUN SUMMARY

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: VD

Date: 14 Oct 2021

	O_2	CO_2	SO ₂
Method	EPA 3A	EPA 3A	EPA 6C
Conc. Units	%	%	ppm

Time: 08:30 to 09:30

Run Averages

10.7 8.0 275

Pre-run Bias at 08:02

Zero Bias	0.0	0.1	6
Span Bias	10.1	9.9	452
Span Gas	10.1	10.2	458

Post-run Bias at 09:31

Zero Bias	0.0	0.2	6
Span Bias	10.1	9.9	454
Span Gas	10.1	10.2	458

Run averages corrected for the average of the pre-run and post-run bias

10.8 🗸 8.2 🗸 275

RUN SUMMARY

Number 2

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

	O ₂	CO ₂	SO ₂	
Method	EPA 3A	EPA 3A	EPA 6C	
Conc. Units	%	%	ppm	

Time: 10:26 to 11:26

Run Averages

10.0 9.3 263

Pre-run Bias at 09:31

Zero Bias	0.0	0.2	6
Span Bias	10.1	9.9	454
Span Gas	10.1	10.2	458

Post-run Bias at 11:28

Zero Bias	0.0	0.2	10
Span Bias	10.1	9.9	452
Span Gas	10.1	10.2	458

Run averages corrected for the average of the pre-run and post-run bias

10.1 / 9.5 / 262

RUN SUMMARY

Number 3

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

	O ₂	CO ₂	SO ₂	
Meth	nod EPA	3A EPA 3	A EPA 6C	
Con	c. Units %	%	ppm	

Time: 12:22 to 13:22

Run Averages

11.5 7.4 287

Pre-run Bias at 11:28

Zero Bias	0.0	0.2	10
Span Bias	10.1	9.9	452
Span Gas	10.1	10.2	458

Post-run Bias at 13:23

Zero Bias	0.0	0.2	10
Span Bias	10.1	9.9	453
Span Gas	10.1	10.2	458

Run averages corrected for the average of the pre-run and post-run bias

11.5 7.5 286 /

Number 1

Client: New Indy Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Time	0	2	CC)2	S) ₂	
Time	mv	%	mv	%	mv	ppm	
	V	Vith SO	G's & N	CG's			
08:31	4483	11.4	2919	7.4	2765	268	
08:32	4490	11.4	2912	7.3	2781	269	
08:33	4500	11.5	2903	7.3	2740	265	
08:34	4585	11.7	2824	7.1	2740	265	
08:35	4527	11.5	2866	7.2	2753	266	
08:36	4437	11.3	2952	7.4	2772	268	
08:37	4532	11.5	2865	7.2	2792	270	
08:38	4455	11.3	2933	7.4	2765	268	
08:39	4456	11.3	2933	7.4	2732	264	
08:40	4472	11.4	2920	7.4	2696	261	
08:41	4486	11.4	2906	7.3	2673	258	
08:42	4522	11.5	2874	7.2	2746	266	
08:43	4553	11.6	2843	7.2	2757	267	
08:44	4439	11.3	2947	7.4	2768	268	
08:45	4456	11.3	2932	7.4	2802	271	
08:46	4375	11.1	3007	7.6	2751	266	
08:47	4410	11.2	2980	7.5	2735	265	
08:48	4426	11.3	2960	7.5	2751	266	
08:49	4358	11.1	3024	7.6	2746	266	
08:50	4355	11.1	3027	7.6	2796	271	
08:51	4336	11.0	3043	7.7	2793	270	
08:52	4286	10.9	3091	7.8	2768	268	
08:53	4308	11.0	3070	7.7	2788	270	
08:54	4255	10.8	3119	7.9	2847	276	
08:55	4262	10.9	3112	7.8	2855	276	
08:56	4230	10.8	3146	7.9	2808	272	
08:57	4309	11.0	3075	7.7	2787	270	
08:58	4289	10.9	3084	7.8	2779	269	
08:59	4214	10.7	3155	7.9	2852	276	
09:00	4207	10.7	3166	8.0	2838	275	
09:01	4234	10.8	3137	7.9	2826	274	
09:02	4182	10.7	3183	8.0	2872	278	
09:03	4090	10.4	3262	8.2	2899	281	
09:04	3992	10.2	3341	8.4	3024	293	
09:05	4000	10.2	3329	8.4	3140	305	
09:06	4020	10.3	3315	8.4	3181	309	
09:07	3980	10.2	3346	8.4	3172	308	
09:08	3952	10.1	3381	8.5	3250	316	
09:09	3988	10.2	3349	8.4	3144	305	
09:10	3967	10.1	3376	8.5	3122	303	

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: VD

Time)2	CC			O_2	
	11110	mv	%	mv	%	mv	ppm	
	09:11	3891	9.9	3449	8.7	3052	296	
	09:12	3907	10.0	3441	8.7	3006	291	
	09:13	3923	10.0	3428	8.6	2990	290	
	09:14	3956	10.1	3400	8.6	2941	285	
	09:15	3966	10.1	3392	8.5	2955	286	
	09:16	3937	10.0	3423	8.6	2907	282	
	09:17	3942	10.1	3426	8.6	2882	279	
	09:18	3978	10.1	3394	8.6	2879	279	
	09:19	3997	10.2	3375	8.5	2848	276	
	09:20	3963	10.1	3410	8.6	2835	275	
	09:21	3985	10.2	3389	8.5	2767	268	
	09:22	4009	10.2	3369	8.5	2773	268	
	09:23	3983	10.2	3396	8.6	2759	267	
	09:24	4011	10.2	3374	8.5	2708	262	
	09:25	4018	10.2	3365	8.5	2708	262	
	09:26	4040	10.3	3341	8.4	2694	261	
	09:27	4065	10.4	3322	8.4	2708	262	
	09:28	4083	10.4	3306	8.3	2660	257	
	09:29	4128	10.5	3269	8.2	2640	255	
	09:30	4131	10.5	3261	8.2	2613	253	
	Avgs	4206	10.7	3169	8.0	2836	275	

Number 2

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Time	C)2	CO	2	S	O_2	
Time	mv	%	mv	%	mv	ppm	
	V	Vith SC	G's & N	CG's			
10:27	4056	10.3	3599	9.1	2533	245	
10:28	4087	10.4	3566	9.0	2549	246	
10:29	3975	10.1	3667	9.2	2634	255	
10:30	3987	10.2	3658	9.2	2658	257	
10:31	4003	10.2	3642	9.2	2642	255	
10:32	3970	10.1	3672	9.2	2650	256	
10:33	4101	10.5	3547	8.9	2609	252	
10:34	4076	10.4	3565	9.0	2655	257	
10:35	4044	10.3	3590	9.0	2744	266	
10:36	3948	10.1	3674	9.3	2801	271	
10:37	3883	9.9	3735	9.4	2931	284	
10:38	3826	9.8	3795	9.6	2944	285	
10:39	3832	9.8	3788	9.5	2899	281	
10:40	3860	9.8	3761	9.5	2926	284	
10:41	3865	9.9	3766	9.5	2847	276	
10:42	3914	10.0	3721	9.4	2812	272	
10:43	3950	10.1	3688	9.3	2757	267	
10:44	4021	10.3	3623	9.1	2702	261	
10:45	4079	10.4	3568	9.0	2686	260	
10:46	4114	10.5	3536	8.9	2704	262	
10:47	4116	10.5	3532	8.9	2710	262	
10:48	4115	10.5	3532	8.9	2733	264	
10:49	4120	10.5	3523	8.9	2710	262	
10:50	4143	10.6	3497	8.8	2739	265	
10:51	4103	10.5	3537	8.9	2754	267	
10:52	4096	10.4	3548	8.9	2749	266	
10:53	4075	10.4	3571	9.0	2701	261	
10:54	4076	10.4	3570	9.0	2723	263	
10:55	4051	10.3	3595	9.1	2754	267	
10:56	4084	10.4	3563	9.0	2717	263	
10:57	4105	10.5	3544	8.9	2705	262	
10:58	4146	10.6	3507	8.8	2702	261	
10:59	4065	10.4	3551	8.9	2683	259	
11:00	4061	10.4	3547	8.9	2655	257	
11:01	4072	10.4	3537	8.9	2664	258	
11:02	4025	10.3	3580	9.0	2686	260	
11:03	4075	10.4	3536	8.9	2662	257	
11:04	4078	10.4	3529	8.9	2687	260	
11:05	4041	10.3	3564	9.0	2711	262	
11:06	3978	10.1	3621	9.1	2747	266	

Number 2

Client: New Indy Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Time	C	O_2		CO ₂		\mathfrak{I}_2	
rime	mv	%	mv	%	mv	ppm	
 11:07	3965	10.1	3638	9.2	2761	267	
11:08	3944	10.1	3658	9.2	2771	268	
11:09	3893	9.9	3708	9.3	2707	262	
11:10	3903	10.0	3700	9.3	2696	261	
11:11	3890	9.9	3713	9.4	2723	263	
11:12	3862	9.9	3742	9.4	2699	261	
11:13	3790	9.7	3808	9.6	2732	264	
11:14	3677	9.4	3916	9.9	2722	263	
11:15	3600	9.2	3991	10.0	2688	260	
11:16	3570	9.1	4021	10.1	2672	258	
11:17	3483	8.9	4107	10.3	2679	259	
11:18	3514	9.0	4075	10.3	2671	258	
11:19	3464	8.9	4121	10.4	2659	257	
11:20	3461	8.8	4122	10.4	2684	260	
11:21	3554	9.1	4031	10.1	2682	259	
11:22	3696	9.4	3901	9.8	2696	261	
11:23	3787	9.7	3809	9.6	2702	261	
11:24	3841	9.8	3747	9.4	2712	262	
11:25	3863	9.9	3717	9.4	2783	269	
11:26	3742	9.6	3824	9.6	2849	276	
Avgs	3929	10.0	3692	9.3	2719	263	

Number 3

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: **15730.001.009**Operator: **VD**

	Time	0		CC		S	D ₂	
	Time	mv	%	mv	%	mv	ppm	
and Add to		٧	Vith SC)G's & N	CG's			
	12:23	4738	12.1	2758	7.0	2851	276	
	12:24	4698	12.0	2792	7.0	2850	276	
	12:25	4520	11.5	2908	7.3	2863	277	
	12:26	4501	11.5	2917	7.4	2883	279	
	12:27	4572	11.6	2852	7.2	2837	275	
	12:28	4607	11.7	2817	7.1	2837	275	
	12:29	4583	11.7	2836	7.1	2846	276	
	12:30	4572	11.6	2847	7.2	2864	277	
	12:31	4492	11.4	2920	7.4	2916	283	
	12:32	4502	11.5	2915	7.3	2886	280	
	12:33	4512	11.5	2904	7.3	2813	272	
	12:34	4452	11.3	2954	7.4	2877	279	
	12:35	4375	11.1	3032	7.6	2854	276	
	12:36	4387	11.2	3023	7.6	2900	281	
	12:37	4416	11.2	2997	7.6	2871	278	
	12:38	4403	11.2	3007	7.6	2818	273	
	12:39	4409	11.2	3000	7.6	2878	279	
	12:40	4450	11.3	2964	7.5	2923	283	
	12:41	4427	11.3	2981	7.5	2878	279	
	12:42	4394	11.2	3017	7.6	2864	277	
	12:43	4512	11.5	2907	7.3	2883	279	
	12:44	4501	11.5	2914	7.3	2918	283	
	12:45	4519	11.5	2895	7.3	2968	288	
	12:46	4526	11.5	2893	7.3	2974	288	
	12:47	4496	11.4	2918	7.4	2945	285	
	12:48	4515	11.5	2902	7.3	2930	284	
	12:49	4507	11.5	2908	7.3	2955	286	
	12:50	4447	11.3	2961	7.5	2979	289	
	12:51	4434	11.3	2980	7.5	3010	292	
	12:52	4523	11.5	2899	7.3	2975	288	
	12:53	4523	11.5	2895	7.3	2978	289	
	12:54	4523	11.5	2905	7.3	2993	290	
	12:55	4515	11.5	2903	7.3	2971	288	
		4483	11.4	2904	7.3 7.4	2979	289	
	12:56 12:57	4469	11.4	2931	7.4 7.4	2979	287	
		4469 4461		2944 2951	7.4 7.4	295 <i>1</i> 2960	287 287	
	12:58		11.4 11.3	2951	7.4 7.5	2975	288	
	12:59	4434						
	13:00	4491	11.4	2924	7.4	2972	288	
	13:01	4529	11.5	2889	7.3	2969	288	
	13:02	4530	11.5	2889	7.3	3000	291	

Number 3

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: **15730.001.009**Operator: **VD**

Time	m _V	%	CC) ₂ %	S(
	mv	/0	mv	/0	mv	ppm	
13:03	4505	11.5	2911	7.3	2970	288	
13:04	4486	11.4	2927	7.4	2960	287	
13:05	4399	11.2	3012	7.6	2981	289	
13:06	4426	11.3	2989	7.5	2999	291	
13:07	4467	11.4	2951	7.4	2980	289	
13:08	4493	11.4	2927	7.4	3001	291	
13:09	4503	11.5	2916	7.3	3018	293	
13:10	4514	11.5	2905	7.3	3007	292	
13:11	4579	11.7	2845	7.2	3009	292	
13:12	4604	11.7	2820	7.1	3026	293	
13:13	4619	11.8	2802	7.1	3036	294	
13:14	4576	11.6	2844	7.2	3058	297	
13:15	4530	11.5	2884	7.3	3101	301	
13:16	4481	11.4	2929	7.4	3124	303	
13:17	4459	11.4	2950	7.4	3079	299	
13:18	4457	11.3	2952	7.4	3081	299	
13:19	4500	11.5	2913	7.3	3114	302	
13:20	4538	11.5	2880	7.3	3052	296	
13:21	4496	11.4	2916	7.3	3079	299	
13:22	4492	11.4	2920	7.4	3065	297	
Avgs	4501	11.5	2917	7.4	2956	287	

BIASNumber 1

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: VD

Date: 14 Oct 2021

Start Time: 08:02

 O_2

Method: EPA 3A Span Conc. 20.0 %

	Bias Results									
Standard	Cal.	Response	Bias	Difference	Error					
Gas	%	mv	%	%	%	Status				
Zero	0.0	-56	0.0	0.0	0.0	Pass				
Span	10.1	3943	10.1	0.0	0.0	Pass				

CO₂

Method: EPA 3A Span Conc. 19.8 %

		Bi	as Resu	lts		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	% /	Status
Zero	0.1	49	0.1	0.0	0.0 /	Pass
Span	9.9	3918	9.9	0.0	0.0	Pass

SO₂

Method: EPA 6C Span Conc. 911 ppm

		Bi	as Resu	lts		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	ppm	mv	ppm	ppm	% ,	Status
Zero	0	119	6	6	0.7	Pass
Span	458	4631	452	-6	-0.7	Pass

Number 2

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: VD

Date: 14 Oct 2021

Start Time: 09:31

 O_2

Method: EPA 3A Span Conc. 20.0 %

Cal.					
Gal.	Response	Bias	Difference	Error	
%	mv	%	%	% /	Status
0.0	-50	0.0	0.0	0.0	Pass
10.1	3959	10.1	0.0	0.0	Pass
	Cali	bration	Drift		
Initial*	Fina	al	Difference	Drift	
%	mv	%	%	% /	Status
0.0	-50	0.0	0.0	0.0	Pass
10.1	3959	10.1	0.0	0.0	Pass
*Bias No. 1					
	% 0.0 10.1 Initial* % 0.0 10.1	% mv 0.0 -50 10.1 3959 Cali Initial* Fina % mv 0.0 -50	% mv % 0.0 -50 0.0 10.1 3959 10.1 Calibration Initial* Final % mv % 0.0 -50 0.0 10.1 3959 10.1	% mv % % 0.0 -50 0.0 0.0 10.1 3959 10.1 0.0 Calibration Drift Difference % mv % 0.0 -50 0.0 0.0 10.1 3959 10.1 0.0	% mv % % % 0.0 -50 0.0 0.0 0.0 10.1 3959 10.1 0.0 0.0 Calibration Drift Final Difference Drift % mv % % 0.0 -50 0.0 0.0 0.0 10.1 3959 10.1 0.0 0.0 0.0

CO₂

Method: EPA 3A Span Conc. 19.8 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.1	63	0.2	0.1	0.5	Pass
Span	9.9	3915	9.9	0.0	0.0	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.1	63	0.2	0.1	0.5 🏑	Pass
Span	9.9	3915	9.9	0.0	0.0	Pass
	*Bias No. 1					

Number 2

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

Start Time: 09:31

SO₂

Method: EPA 6C Span Conc. 911 ppm

		Bi	as Resu	Its	
Standard Gas Zero	Cal. ppm 0	Response mv 117	Bias ppm 6	Difference ppm 6	Error % Status 0.7 Pass
Span	458	4648	454	-4	-0.4 Pass
		Cali	bration	Drift	
Standard	Initial*	Fina	al	Difference	Drift /
Gas	ppm	mv	ppm	ppm	% / Status
Zero	6	117	6	0	0.0 Pass
Span	452 *Bias No. 1	4648	454	2	0.2 V Pass

Number 3

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

Start Time: 11:28

 O_2

Method: EPA 3A Span Conc. 20.0 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.0	-54	0.0	0.0	0.0	Pass
Span	10.1	3942	10.1	0.0	0.0	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.0	-54	0.0	0.0	0.0 //	Pass
Span	10.1	3942	10.1	0.0	0.0	Pass
•	*Bias No. 2					

CO₂ Method: EPA 3A Span Conc. 19.8 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.1	76	0.2	0.1	0.5 🗸	Pass
Span	9.9	3919	9.9	0.0	0.0	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.2	76	0.2	0.0	0.0 🗸	Pass
Span	9.9	3919	9.9	0.0	0.0	Pass
	*Bias No. 2				,	

Number 3

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

Start Time: 11:28

SO₂

Method: EPA 6C Span Conc. 911 ppm

		Bi	as Resu	Its	
Standard	Cal.	Response	Bias	Difference	Error
Gas	ppm	mv	ppm	ppm	% / Status
Zero	0	167	10	10	1.1 Pass
Span	458	4630	452	-6	-0.7 Pass
		Cali	bration	Drift	
Standard	Initial*	Fina	al	Difference	Drift
Gas	ppm	mv	ppm	ppm	% / Status
Zero	6	167	10	4	0.4 / Pass
Span	454	4630	452	-2	-0.2 Pass
	*Bias No. 2)			

Number 4

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

Start Time: 13:23

 O_2

Method: EPA 3A Span Conc. 20.0 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	% /	Status
Zero	0.0	-52	0.0	0.0	0.0	Pass
Span	10.1	3947	10.1	0.0	0.0	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	% /	Status
Zero	0.0	-52	0.0	0.0	0.0	Pass
Span	10.1	3947	10.1	0.0	0.0	Pass
•	*Bias No. 3					

CO₂
Method: EPA 3A
Span Conc. 19.8 %

Bias Results									
Standard	Cal.	Response	Bias	Difference	Error				
Gas	%	mv	%	%	% //	Status			
Zero	0.1	58	0.2	0.1	0.5	Pass			
Span	9.9	3913	9.9	0.0	0.0	Pass			
		Cali	bration	Drift					
Standard	Initial*	Fina	al	Difference	Drift				
Gas	%	mv	%	%	%	Status			
Zero	0.2	58	0.2	0.0	0.0	Pass			
Span	9.9	3913	9.9	0.0	0.0	Pass			
-	*Bias No. 3					/			

Number 4

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

Start Time: 13:23

SO₂

Method: EPA 6C Span Conc. 911 ppm

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	ppm	mv	ppm	ppm	%	Status
Zero	0	164	10	10	1.1	Pass
Span	458	4640	453	-5	-0.5	Pass
		Cali	bration	Drift		-
Standard	Initial*	Fina	al	Difference	Drift	
Gas	ppm	mv	ppm	ppm	%	Status
Zero	10	164	10	0	0.0	/ Pass
Span	452	4640	453	1	0.1	Pass
•	*Bias No. 3	}				

CALIBRATION DATA

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Project Number: 15730.001.009

Operator: VD

Date: 14 Oct 2021

Start Time: 07:50

 O_2

Method: EPA 3A

Calibration Type: Linear Regression

Calibration Results

 %
 Cylinder ID
 Result, mv

 Zero
 - 55

 10.1 ✓
 EB0062273
 3952

 20.0 ✓
 CC335419
 7915

Curve Coefficients

Slope Intercept 398.7 -67

Corr. Coeff. >0.9999

CO₂
Method: EPA 3A

Calibration Type: Linear Regression

Calibration Results **% Cylinder ID**Zero - 49

10.2 - EB0062273 3913

19.8 - CC335419 7940

Curve Coefficients

Slope Intercept Corr. Coeff. 398.2 -10 0.9996

CALIBRATION DATA

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Project Number: 15730.001.009

Operator: VD

Date: 14 Oct 2021

Start Time: 07:50

SO₂

Method: EPA 6C

Calibration Type: Linear Regression

Calibration Results

 ppm
 Cylinder ID
 Result, mv

 Zero
 59

 458
 EB0108003
 4692

 911
 CC259060
 9262

Curve Coefficients

Slope 10.11 Intercept 61 **Corr. Coeff.** >0.9999

CALIBRATION ERROR DATA

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

Start Time: 07:50

 O_2

Method: EPA 3A

Span Conc. 20.0 %

Slope 398.7

Intercept -66.8

Standard % Zero 10.1 20.0	Response mv -55 3952 7915	Result % 0.0 10.1 20.0	Difference % 0.0 0.0 0.0	Error % 0.0 0.0 0.0	Status Pass Pass Pass
---------------------------------------	---------------------------------------	------------------------------------	--------------------------------------	---------------------------------	--------------------------------

CO₂

Method: EPA 3A

Span Conc. 19.8 %

Slope 398.2

Intercept -10.4

Standard % Zero 10.2	Response mv 49 3913	Result % 0.1 9.9	Difference % 0.1 -0.3	Error % / 0.5 -1.5	Status Pass Pass
19.8	7940	20.0	0.2	1.0	Pass

SO₂

Method: EPA 6C

Span Conc. 911 ppm

Slope 10.11

Intercept 61

Standard ppm	Response mv	Result ppm	Difference ppm	Error %	Status
Zero	59	0	0	0.0	Pass
458	4692	458	0	0.0	Pass
911	9262	911	0	0.0	/ Pass

METHODS AND ANALYZERS

Client: New Indy

ew Indy

Location: Catawba, SC
Source: No. 2 Combination Boiler

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

File: C:\Data\211014 New Indy Catawba No. 2 Combination Boiler.cem

Program Version: 2.2, built 3 Jul 2020 File Version: 2.04

Computer: WSTRLXX-PC Trailer: 88
Analog Input Device: MCC USB-1608G

Channel 1

Analyte

Method

Analyzer Make, Model & Serial No.

Full-Scale Output, mv

O2

EPA 3A, Using Bias

CAI 600 s/n: E08008-M

10000

Analyzer Range, % 20.0 Span Concentration, % 20.0

Channel 2

Analyte CO2
Method EPA 3A, Using Bias
Analyzer Make, Model & Serial No.
Full-Scale Output, mv 10000
Analyzer Range, % 20.0
Span Concentration, % 19.8

Channel 5

Analyte
Method
Analyzer Make, Model & Serial No.
Full-Scale Output, mv
Analyzer Range, ppm
Span Concentration, ppm

SO2
EPA 6C, Using Bias
Teledyne T100H SN410
10000
1000
911

No. 2 Combination Boiler (Condition 2: NCG Gases Only)

New Indy Catawba, SC 15730.001.009 No. 2 Combination Boiler Condition 2: NCGs Only

EMISSION CALCULATIONS

Date Time Began Time Ended		Run 1 10/14/21 / 1410 / 1510 /		10/14/21 10/14/21 1547 1725 1825	
Volumetric Flow Rate, (Qs), DSCFM BWS % Oxygen		1.33E+05 0.154 / 11.9 /	1.33E+05 0.151 11.2	1.33E+05 0.149 11.7	1.33E+05 0.152 11.6
Sulfur Dioxide Concentration, ppm Emission Rate, lb/hr	MW= 64.06	235.0 311.3	234.0 /	232.0 307.4	233.7 309.9

New Indy Catawba, SC 15730.001.009 No. 2 Combination Boiler

Condition 2: NCGs Only

ISOKINETIC CALCULATIONS

ISOMINETIC CAEC	CEATIONS			
	1	2	3	Mean
	1410	1547		
	1529 🗸	1707 🏑	1844	
INPUT DAT	ГА			
(Theta)	64.0 /	64	64	64
(Dia.)	120.00 🗸	120.00	120.00	120.00
(Pb)	29.65 🗸	29.65 🗸	29.65	29.65
(Pg)	-1.10 /	-1.10 🗸	-1.10	-1.10
(Cp)	0.84	0.84	0.84	0.84
(Y)	1.0000 ~	1.0000 🗸	1.0000 🗸	1.0000
(Delta H@)	2.0490 🗸	2.0490 🗸	2.0490	2.0490
(Dn)	0.250 🗸	0.250 🗸	0.250	0.250
(Vm)	39.460 🗸	39.485 🗸	39.390	39.445
(Tm)	96.3	96.3 🗸	90.9 🗸	94.5
(Tm-R)	556.3	556.3	550.9	554.5
(Delta H)	1.300 🗸	1.300 🗸	1.300	1.300
((Delta H)½)avg)	1.140 /	1.140	1.140	1.140
(Vlc)	143.8	141.1	139.9	141.6
(CO2)	7.2 🗸	7.6	7.0	7.3
(O2)	11.9	11.2 /	11.7 /	11.6
	0.773 🗸	0.775	0.770 ~	0.773
	456.8	461.2	459.7	459.2
(Ts-R)	916.8	921.2	919.7	919.2
CALCULATED	DATA			
(An)	3.41E-04	3.41E-04	3.41E-04	3.41E-04
	/			78.54
				29.57
				29.75
, ,				37.328
				6.665
, ,				0.152
				0.152
				29.63
* '				27.87
				58.61
				276199
(Qs)	132829	133245	1328/3	132982
(Vaa)	0 9871	0.9858	0.9846	0.986
(I Ya)	0.70 / 1	0.7070	0.7070	0.700
	INPUT DATE	INPUT DATA	1	1

T C	
,,,	
_	
$\boldsymbol{\omega}$	
Data	
_	
T	
_	
P	
W	
D Management	
IL	
netic	
C	
4	
di	
W	
_	
X	
Okir	
0	
40	
(1)	

				Г	I		1		1	1
				Final		0.00	25	Good		
of 1		NIA	Checks	Initial		5.05	15"	Soed		
Page 1 of 1		K Factor	Leak (6		. Hg		2/2	7/3
	L	X			/olime f	oldling,	@ Vac., Ir	Pitot		
									Filter IC	Sample ID
	□ ₀	in Ha	in. H ₂ O	mL	0	0		ff ²		9
	ħö	39.65	-1.1	अस व	80			Stack Area 78.54 ft		its 1
	emp	sure*	ssure	Gain	Gain		100	Area		rse Poir
oisture	Ambient Temp	Saro. Pressure*	static Pressure	Impinger Gain	ilica Gel Gain			Stack	0.250	Total Traverse Points
4, Mc	A	Ba , Ba	S		S		1		0.250	n. Tot
Method: EPA 4, Moisture	A025	000	1948C	PR-5Z	S	0.84	50.0	4070	0.250 0.250	-
lethoc	AC	1.0	2.0	PR	S	284	107	2	.25	0.250
2	QI e	\ \ \	H@	lgth	erial	Deff D			ms.	am.
	Console ID	Meter Corr., Y	Console AH@	Probe ID/Length	Liner Material	Pitot ID/Coeff	Thorma ID		Nozzle IU/Diams.	Avg. Nozzle Diam.
				Prob	ا ا	Pit			NOZZIG	Avg. N
		SC	on Boiler		600			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		٦.
ata	New Indy	Catawba, SC	mbinatic	Stack	15/30.001.009		16 11	7-7-	73/BE	E
old Di		Ca	No. 2 Cc		15/		10. in 21	10-		3
ic Fie	Client	/Plant	Source No. 2 Combination Boiler		umber	Run Number	Date	- Jonas	H H	Sample I Ime
Isokinetic Field Data		Location/Plant_	0	Sample Location	W. C. Number	Run N		Toot Doropan	מאו שבוי	Sample
Iso			C	SO T				_		10000

	COMMENTO	Commence													10
N/A	SAMPLE	VACUUM (in Hg)							, ,	,					
ID Ne ID	IMPINGER	TEMP (°F)	7")	200	59	(,)	3 75	17)	19		9	7 77	1.6	15	(a
Filter ID Sample ID	FILTER	TEMP (PF)	×	×	×	×	×	×	×	×	×	×	×	×	The State of the last
16	FILTER	TEMP (°F)	256	255	754	255	251.	256	265	255	254	750	355	256	
0 0.250 Total Traverse Points	PROBE	TEMP (*F)	252	253	254	254	253	nsc	285	hSC	750	750	458	255	200
0.250 0.250 in. Total Traver	DGM OUTET	TEMP (°F)	44	95	36	916	8	8	96	96	dı.	96	46	8	
0.25 in.	DGM	TEMP (°F)	×	×	×	×	×	×	×	×	×	×	×	×	
0.25 0.250	STACK	(F)	461	401	460	400	tSh	456	455	455	751.	456	454	tsh	
	DRY GAS METER READING (ft³)	90,950	43.4	45.9	487	8.00/	103.3	£.501.	(08.7	110.6	113.1	115,6	118.1	120,5	
Avg. Nozzle Diam.	ORIFICE PRESSURE AH	(in. H ₂ 0)	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	6.1	(.3	2.	
min.	VELOCITY PRESSURE	(in. H ₂ O)	.75	44.	69.	H.	.77.	元:	**	٥٤.	.63	44.	. 45	04.	
LAL MIL	CLOCK TIME (plant time)	14:10	, va								Laures				
Sample Time	SAMPLE TIME (min)	0	4	8	12	16	20	24	28	32	36	40	44	48	2
Samp	ш	2	A-1	2	3	4	8-1	2	3	4	C-1	2	8	4	

Condition 2

15730.001.009 #1-2 CBs SO₂ Rmission Report

Calculated by QC by

Result Ref. Temp, °F

Qs, dscfm % Isokinetic

Thermocouple Check Meter Temp., °F

254/256

254/255

96.31

Flue Gas Composition 16/24

Carbon Dioxide, % Moisture, %

E 20 20

Oxygen, %

ANG VAH

AND A = . 60484 1776 V Avg VAp

Comments

Integrated Air Services

34.460 456.00

130. 410 Total Volume

Avg AH 1.3

"Barometric Pressure is at port elevation

15:29

.33

178.0 125.5 133.0

> 44 40

52 E

Min/Max

Min/Max

Avg Tm

वरन

99

O₂/CO₂ by Orsat Fyrite M3A

Leak Check, Pre-run

Post-run

scf

Max Vac

Max Temp

200 63

65 9

× × ×

200

15%

a

52 56 09 64

0-1 2 3 4

× × ×

75% 456 45%

256

255 255

255 355

40

Data Sheets Version 2. Copyright © 2021 by Weston Solutions, Inc.

	_
9	Ų
*	ב
(U
	כ
	_
7	3
_	
(D
	-
Ш	L
_	
(د
19	-
1	7
(U
2	Ξ
	-
7	<
(1
	2
U	r)
-	-

								_			
					Final	0.00	10	2.1	Send		
7	5	Oliv	ואלא	eak Checks	Initial	0 001	11.31	. 2	good		
Dogs 1 of 1	aña	K Factor		Leak		ft ³	n Ha	n		N/A	N
	L					Volume, 1	@ Vac. in Ho	1010	בווסו	!	le ID
		,		2					1.14	riller	Sample ID
	0.	2 2 1	62		3 mL	10,8 9		4 642	=	(,	0
	10	00	67	D	130.3			785	2	0.00	OILIES
Jre	1	Baro Pressure*	Static Procesuro	Incepia	Impinger Gain	Silica Gel Gain		Stack Area 78 54 42	200	Total Traverso Deliate	dveise
Moist	1 Ambi	Baro	Chatic	Olano	IIdwi	Silica		Ċ.	1	Total	Iolai
EPA 4,		3	6			,0,0	0.84		0250 0250	2.5	
Method: EPA 4, Moisture	ACOA	1.000	2050	DD 67	7C-VL	200	4	A025	000	0.250	007:0
Mei		\ \	3	٥٠٤		9000	L 720		0 25		
	Console ID	Meter Corr., Y	Console AH@	Prohe ID/I ength	liper Material	ID/Coof	ritor in/coell.	Thermo ID	Nozzle ID/Diams.	zle Diam	
		Mete	Con	Proha		Ditot			Nozzle	Avg. Nozzle Diam	
		SC	n Boiler		60		A SHAREST ST.				
ata	New Indy	Catawba, SC	Source No. 2 Combination Boiler	Stack	15730 001 009	2	1	10-14-21	RS / BE	min	
eld Di		S	No. 2 Cc							79	5
tic Fi	Client	Location/Plant	Source	ocation	W. O. Number	Run Number	1	Date	Test Personnel	Sample Time	
Isokinetic Field Data		Locatic		Sample Location	W.O.	Run			Test Pe	Samp	
0)											

		COMMENS																					
		3									-	*										V _{m-std} ,	J scr Qs, dscfm
1 2	SAMPLE	VACUUM (in Hg)		7	7	1	1	40	1	,,	7	4 (7	7	C	2	C	7	2	7	7	Max Vac	
	IMPINGER	TEMP (°F)		ور	- 9	11	9	24	62	1.2	63	7.71	79	65	65	(5)	11	١٤٥	62	2 1	60	Max Temp	Thermocouple Check
	FILTER	TEMP (°F)	^	<	×	×	×	×	×	×	×	×		×	×	×	×	×	×	7	X	Min/Max	Then
	FILTER	TEMP (°F)	200	457	355	254	255	255	750	165	266	2000	400	254	354	754	374	عرير	356	3/15	125	Min/Max	ite M3A
SAN TANKS CANADA SAN TANKS CO.	PROBE	(F)	37.0	424	255	254	754	265	יאני.	354	JEU	200	927	455	255	255	nac	יכא	756	(000)	1454	Min/Max	1,7
O Marketon Account of the	DGM OUTET		90	9 1	48	96	96	25	96	96.	9/8	20	9	9	96	96	91	91	91.	2	91	Avg Im	1
A PRINCIPAL INC. TO	DGM	TEMP (PF)	×		×	×	×	×	×	×	×	×	*		×	×	×	×	×	/x/	nter l'	Avg	_
Service Services	STACK	(°F)	759		85h	tsh	tsh	454	484	460	460	1717	11.0	707	463	465	711	4165	1197	777	191	161 19 1	mposition
THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSONS ASSESSED.	DRY GAS METER READING (ft³)	130.430	1330	2001	135.4	137.8	140,3	142.7	145,3	4.44	150.2	£751	165 3	13.0	157.7	100,1	162.7	1 1 2 2 2	7.67	100 000	Total Volume	1	Gas C
のないないのであるのである	ORIFICE PRESSURE AH	(In. H ₂ O)	1.3	1.3	6.1	1.3	1.3	1.3	1.3	1.3	1.3	1,3	11	7	1.3	(.3	1.3	1,3	(.)	12	Av ove	1.3	Avg JOH
是是我们的 · · · · · · · · · · · · · · · · · · ·	VELOCITY PRESSURE Ap	(in. H ₂ O)	09,	5	75,	7	٥٣.	*.	. 78	一元。	7.	K	44		. 6	63	:65	:53	hh'	70	Avo JAn	, मध्यः	Ang SP=, 60898
	TIME (plant time)	th:51			40															19:07	port elevation		
一年 日本 日本	SAMPLE TIME (min)	0	4	80		12	16	20	24	28	32	36	40	44		48	52	56	09	64	Barometric Pressure is at port elevation		
	TRAVERSE POINT)	C *1	2		m	4	B-1	2	8	4	A 8-1	2	6		4	D-1	2	8	4	*Barometi		ス世 型 り を が が の の の の の の の の の の の の の

Condition 2

Calculated by QC by

Result

Qs, dscfm % Isokinetic

Thermocouple Check

Meter Temp., °F Ref. Temp, °F

Leak Check, Pre-run

Post-run

Carbon Dioxide, % Oxygen, %

ANG JOH

Ang 51=, 60878

Comments

Integrated Air Services

Moisture, %

10/26 43

Data Sheets Version 2, Copyright © 2021 by Weston Solutions, Inc.

ata
Ö
0
i-
CF
əti
in
ok
S

	ial Final	COMMENTS			156												
0000	K Factor N/A Leak Checks Initial in. Hg N/A N/A	1800 Bar - 181 - 193 - 183 - 183	4	7	1 1	7	18	n	7	2	7	1	1	10	0	1	6
	olume Vac.	IMPINGER EXIT TEMP (°F)	1-9	63	62	199	179	13	109	179	99	65	100	6.2	77	9	9
		FILTER EXIT TEMP ("F)	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
	24.65 in. Hg -1,1 in. H ₂ O 136.4 mL -1,5 g 78.54 ft ² nts 16	FILTER BOX TEMP (°F)	257	256	352	255	254	458	255	256	754	752	354	254	254	284	110
	i ii	PROBE TEMP (°F)	757	754	472	254	255	255	255	355	255	754	354	354	255	255	1
oisture	Ambient Temper Static Pressure* Static Pressure Impinger Gain Silica Gel Gain Silica Gel Gain Stack Area 0.250 0.250 Total Traverse Poin	DGM OUTET TEMP (°F)	92	411	41	41	42	92	42	42	115	91	16	16	40	800	
A 4, M	8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	DGM INLET TEMP (°F)	×	×	×	×	×	×	×	×	×	×	×	×	×	×	>
Method: EPA 4, Moisture	AO25 1.000 2.05 X PR-52 SS SS AO25 5 0.250	STACK TEMP (°F)	462	462	462	462	458	454	454	484	484	452	459	461	462	191	ŝ
Meth		DRY GAS METER READING (R ²)	172.6	175.0	137.5	179.9	182.4	6, 131	187.3	184.8	192.	194.8	147.2	199,6	3022	204 5) 0
	Console ID Meter Corr., Y Console AH@ Probe ID/Length Liner Material Pitot ID/Coeff Thermo ID Nozzle ID/Diams Avg. Nozzle Diam.	ORIFICE PRESSURE AH (in. H ₂ O)	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	"
		VELOCITY PRESSURE Ap (in. H ₂ O)	.73	.70	٠٤٦.	19.	.73	5t.	H.	Ŧ.	.56	.52	.45	٠,40	:65	,54	'מח
Isokinetic Field Data	No. 2 Combination Boiler Stack 15730.001.009 3 10-14-21 RS/BE	CLOCK TIME (plant time)						**									
etic Fie		SAMPLE FIME (min)	4 0	α	72	91	20	24	87	32	05	40	44	48	52	56	09
Isokine	Client Location/Plant Source Sample Location W. O. Number Run Number Date Test Personnel	TRAVERSE POINT NO.	A-1	7	77	4	B-1	7 6	,	4 (5 (2	e	4	D-1	2	က

Condition 2

Calculated by QC by

Result

V_{m-std}, scf Qs, dscfm % Isokinetic

Max Vac

Max Temp 00

1354/25F

40.875 252 255

Min/Max HS &

Min/Max,

Avg Tm

460

209. 450 Total Volume

Avg T_s

O₂/CO₂ by Orsat Fyrite M3A

Flue Gas Composition

Avg VAH

Mug2 P= . 6060

Comments

Integrated Air Services

Carbon Dioxide, % Oxygen, %

Moisture, %

noin

459.69

34.340

Avg ∆H 1.3

Ang vap. .40 744

*Barometric Pressure is at port elevation

18:44

64 9

4 က

Leak Check, Pre-run

Post-run

وو

×

254

255 754

60 80

×

Neo

207.0

Thermocouple Check

Meter Temp., °F Ref. Temp, °F

Sample Recovery Field Data

Method: EPA 4, Moisture

Location	Client	New Indy Catawba, SC	<u>—</u> j		Source W.O. Numbe	No. 2 Co	mbination	Boiler		
			ngers 1 - 3 measur	rements in gran		157	30.001.008	•		
Run No.	1		Sample Date	10-14-21	Red	overy Date	10-14	-21		
Sample ID				NA			RS			
				npingers		rularys	10			
Contents	1	2	3			Imp.Total	Silica Gel	Total		
Final	The same	2.11.0					grams			
Initial	896.1	764.2	543.6			/	813.1			
Gain	779.8	687.8	541.4			-	7042			
	i16.3	16.4	22 0			134.9	8.9	143.80		
	pinger Color				Labled?					
Silica G	el Condition		#		Sealed?					
A Company of the Comp										
Run No.	2		Sample Date	10-14-21	Rec	overy Date	10-14-	21		
Sample ID			Filter ID	N/A			R5			
	1	2		pingers				1 Feb. Dan		
Contents		2	3		STANTON NO.	Imp.Total		Total		
Final	887.8	721.7	547.2				grams			
Initial	778.6	704.2	543.6				830.5			
Gain	109.2	17.5 /	3.6			122	819.7			
lmr	oinger Color		3.6		Two Control of the Co	130,3	10.8	141.1		
	el Condition				Labled?					
Onica O	er condition				Sealed?			Alman		
Run No.	3		Sample Date	10-14-21	Reco	overy Date	10-14-	21		
Sample ID			Filter ID	N/A		Analyst				
				pingers		7 inaryot	113			
Contents	1	2	3			Imp.Total	Silica Gel	Total		
Final	03(grams			
Initial	871.4	720.4	549.9		1		840.0			
Gain	760.0	704.1	547.2				830.5	/		
1721	111.4	16.3	2.7			130.4	95/	139.9		
	inger Color	i A	1975 1000		Labled?					
Silica Ge	el Condition				Sealed?					
	Check COC for Sample IDs of Media Blanks									

RUN SUMMARY

Number 4

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

	O_2	CO ₂	SO ₂	
Method	EPA 3A	EPA 3A	EPA 6C	
Conc. Units	%	%	ppm	

Time: 14:10 to 15:10

Run Averages

11.8 7.0 239

Pre-run Bias at 13:23

Zero Bias	0.0	0.2	10
Span Bias	10.1	9.9	453
Span Gas	10.1	10.2	458

Post-run Bias at 15:11

Zero Bias	0.0	0.2	11
Span Bias	10.1	9.9	459
Span Gas	10.1	10.2	458

Run averages corrected for the average of the pre-run and post-run bias

11.9 / 7.2 / 235 /

RUN SUMMARY

Number 5

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

	O ₂	CO ₂	SO ₂	
Method	EPA 3A	EPA 3A	EPA 6C	
Conc. Units	%	%	ppm	

Time: 15:47 to 16:47

Run Averages

11.2 7.4 240

Pre-run Bias at 15:11

Zero Bias	0.0	0.2	11
Span Bias	10.1	9.9	459
Span Gas	10.1	10.2	458

Post-run Bias at 16:48

Zero Bias	0.0	0.2	10
Span Bias	10.1	9.9	460
Span Gas	10.1	10.2	458

Run averages corrected for the average of the pre-run and post-run bias

11.2 / 7.6 / 234 /

RUN SUMMARY

Number 6

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

	O_2	CO ₂	SO ₂	
Method	EPA 3A	EPA 3A	EPA 6C	
Conc. Units	%	%	ppm	

Time: 17:25 to 18:25

Run Averages

11.7

6.8

235

Pre-run Bias at 16:48

Zero Bias	0.0	0.2	10
Span Bias	10.1	9.9	460
Span Gas	10.1	10.2	458

Post-run Bias at 18:26

Zero Bias	0.0	0.2	8
Span Bias	10.1	9.9	448
Span Gas	10.1	10.2	458

Run averages corrected for the average of the pre-run and post-run bias

11.7 / 7.0 / 232

Number 4

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: VD

T:	0	2	CC)2	S	O_2	
Time	mv	%	mv	%	mv	ppm	
		NC	G's Only	,			
14:11	4623	11.8	2823	7.1	2463	238	
14:12	4586	11.7	2862	7.2	2490	240	
14:13	4611	11.7	2837	7.2	2475	239	
14:14	4574	11.6	2870	7.2	2496	241	
14:15	4606	11.7	2845	7.2	2484	240	
14:16	4641	11.8	2809	7.1	2419	233	
14:17	4657	11.8	2792	7.0	2396	231	
14:18	4688	11.9	2763	7.0	2413	233	
14:19	4691	11.9	2757	7.0	2425	234	
14:20	4679	11.9	2766	7.0	2450	236	
14:21	4664	11.9	2782	7.0	2442	236	
14:22	4676	11.9	2769	7.0	2462	238	
14:23	4680	11.9	2769	7.0	2428	234	
14:24	4648	11.8	2799	7.1	2426	234	
14:25	4597	11.7	2847	7.1	2452	237	
14:26	4592	11.7	2853	7.2	2470	238	
	4565		2881	7.2	2470	239	
14:27	4505	11.6	2870	7.3	2479	236	
14:28		11.7					
14:29	4624	11.8	2827	7.1	2466	238	
14:30	4692	11.9	2764	7.0	2485	240	
14:31	4765	12.1	2692	6.8	2459	237	
14:32	4722	12.0	2728	6.9	2488	240	
14:33	4723	12.0	2729	6.9	2509	242	
14:34	4761	12.1	2691	6.8	2465	238	
14:35	4720	12.0	2726	6.9	2463	238	
14:36	4693	11.9	2755	6.9	2535	245	
14:37	4688	11.9	2759	7.0	2552	247	
14:38	4652	11.8	2795	7.0	2547	246	
14:39	4696	11.9	2755	6.9	2545	246	
14:40	4767	12.1	2685	6.8	2549	246	
14:41	4705	12.0	2743	6.9	2544	246	
14:42	4671	11.9	2777	7.0	2564	248	
14:43	4672	11.9	2777	7.0	2522	244	
14:44	4640	11.8	2807	7.1	2492	241	
14:45	4626	11.8	2818	7.1	2492	241	
14:46	4646	11.8	2796	7.0	2550	246	
14:47	4621	11.8	2822	7.1	2544	246	
14:48	4610	11.7	2833	7.1	2549	246	
14:49	4663	11.9	2786	7.0	2505	242	
14:50	4655	11.8	2792	7.0	2458	237	

Number 4

Client: New Indy Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Time	C		CC		S	O_2	
Tillie	mv	%	mv	%	mv	ppm	
14:51	4670	11.9	2778	7.0	2434	235	
14:52	4679	11.9	2768	7.0	2489	240	
14:53	4671	11.9	2777	7.0	2533	245	
14:54	4669	11.9	2780	7.0	2523	244	
14:55	4689	11.9	2763	7.0	2482	240	
14:56	4655	11.8	2792	7.0	2476	239	
14:57	4618	11.8	2833	7.1	2489	240	
14:58	4634	11.8	2819	7.1	2424	234	
14:59	4635	11.8	2816	7.1	2403	232	
15:00	4647	11.8	2802	7.1	2470	238	
15:01	4661	11.9	2790	7.0	2473	239	
15:02	4688	11.9	2766	7.0	2463	238	
15:03	4697	11.9	2759	7.0	2434	235	
15:04	4643	11.8	2808	7.1	2427	234	
15:05	4661	11.9	2794	7.0	2383	230	
15:06	4692	11.9	2762	7.0	2369	228	
15:07	4585	11.7	2826	7.1	2392	231	
15:08	4455	11.3	2873	7.2	2394	231	
15:09	4431	11.3	2894	7.3	2408	232	
15:10	4425	11.3	2900	7.3	2475	239	
Avgs	4648	11.8	2794	7.0	2472	239	

Number 5

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Timo	O	2	CC)2	S	O_2	
Time	mv	%	mv	%	mv	ppm	
15:48	4333	11.0	2989	7.5	2497	241	
15:49	4359	11.1	2963	7.5	2409	232	
15:50	4364	11.1	2961	7.5	2433	235	
15:51	4374	11.1	2954	7.4	2449	236	
15:52	4365	11.1	2959	7.5	2457	237	
15:53	4342	11.1	2980	7.5	2490	240	
15:54	4391	11.2	2940	7.4	2486	240	
15:55	4397	11.2	2931	7.4	2475	239	
15:56	4398	11.2	2925	7.4	2486	240	
15:57	4327	11.0	2993	7.5	2495	241	
15:58	4283	10.9	3037	7.7	2486	240	
15:59	4316	11.0	3011	7.6	2490	240	
16:00	4374	11.1	2956	7.5	2464	238	
16:01	4341	11.1	2985	7.5	2470	238	
16:02	4317	11.0	3009	7.6	2493	241	
16:03	4291	10.9	3032	7.6	2463	238	
16:04	4325	11.0	3000	7.6	2461	238	
16:05	4280	10.9	3041	7.7	2490	240	
16:06	4224	10.8	3098	7.8	2482	240	
16:07	4200	10.7	3126	7.9	2462	238	
16:08	4275	10.7	3054	7.7	2436	235	
16:09	4336	11.0	2993	7.5	2438	235	
16:10	4319	11.0	3007	7.6	2457	237	
16:11	4326	11.0	3000	7.6	2475	239	
16:11	4320	11.0	3004	7.6	2447	236	
16:12	4263	10.9	3059	7.7	2447	239	
			3097			239	
16:14	4228	10.8		7.8	2476	239	
16:15	4313	11.0	3014	7.6	2453 2437	235	
16:16	4333	11.0	2993	7.5			
16:17	4380	11.2	2948	7.4	2466	238	
16:18	4399	11.2	2927	7.4	2451	237	
16:19	4375	11.1	2951	7.4	2509	242	
16:20	4356	11.1	2967	7.5	2502	242	
16:21	4361	11.1	2962	7.5	2510	242	
16:22	4337	11.0	2987	7.5	2512	243	
16:23	4348	11.1	2979	7.5	2483	240	
16:24	4375	11.1	2951	7.4	2421	234	
16:25	4390	11.2	2937	7.4	2368	228	
16:26	4434	11.3	2896	7.3	2391	231	
16:27	4408	11.2	2917	7.4	2412	233	
16:28	4393	11.2	2934	7.4	2457	237	

Number 5

Client: New Indy Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Time	0	2	CC)2	S	O_2	
Time	mv	%	mv	%	mv	ppm	
16:29	4361	11.1	2964	7.5	2506	242	
16:30	4380	11.2	2949	7.4	2506	242	
16:31	4450	11.3	2882	7.3	2527	244	
16:32	4482	11.4	2849	7.2	2503	242	
16:33	4491	11.4	2841	7.2	2482	240	
16:34	4449	11.3	2881	7.3	2542	246	
16:35	4455	11.3	2877	7.3	2516	243	
16:36	4455	11.3	2875	7.2	2568	248	
16:37	4520	11.5	2814	7.1	2556	247	
16:38	4509	11.5	2830	7.1	2557	247	
16:39	4549	11.6	2788	7.0	2567	248	
16:40	4520	11.5	2817	7.1	2554	247	
16:41	4556	11.6	2783	7.0	2533	245	
16:42	4499	11.5	2832	7.1	2539	245	
16:43	4481	11.4	2855	7.2	2548	246	
16:44	4541	11.6	2798	7.1	2521	243	
16:45	4520	11.5	2816	7.1	2551	246	
16:46	4539	11.6	2799	7.1	2554	247	
16:47	4556	11.6	2784	7.0	2531	244	
Avgs	4386	11.2	2942	7.4	2486	240	

Number 6

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Time	C)2	CC)2	S	O_2	
Time	mv	%	mv	%	mv	ppm	
17:26	4726	12.0	2676	6.7	2289	220	
17:27	4492	11.4	2877	7.3	2311	223	
17:28	4361	11.1	2983	7.5	2302	222	
17:29	4301	11.0	3037	7.7	2354	227	
17:30	4313	11.0	3025	7.6	2401	232	
17:31	4310	11.0	3018	7.6	2360	228	
17:32	4301	11.0	3028	7.6	2399	231	
17:33	4316	11.0	3018	7.6	2399	231	
17:34	4345	11.1	2990	7.5	2399	231	
17:35	4364	11.1	2973	7.5	2405	232	
17:36	4250	10.8	3082	7.8	2375	229	
17:37	4259	10.9	3085	7.8	2362	228	
17:38	4275	10.9	3073	7.7	2355	227	
17:39	4423	11.3	2931	7.4	2350	227	
17:40	4470	11.4	2834	7.1	2318	223	
17:41	4495	11.4	2788	7.0	2324	224	
17:42	4574	11.6	2697	6.8	2326	224	
17:43	4662	11.9	2612	6.6	2295	221	
17:44	4695	11.9	2582	6.5	2342	226	
17:45	4643	11.8	2631	6.6	2354	227	
17:46	4608	11.7	2661	6.7	2326	224	
17:47	4664	11.9	2612	6.6	2348	226	
17:48	4656	11.8	2618	6.6	2365	228	
17:49	4721	12.0	2556	6.4	2392	231	
17:50	4714	12.0	2560	6.5	2400	231	
17:51	4822	12.3	2459	6.2	2405	232	
17:52	4949	12.6	2330	5.9	2406	232	
17:53	5008	12.7	2269	5.7	2404	232	
17:54	5030	12.8	2249	5.7	2384	230	
17:55	4987	12.7	2293	5.8	2389	230	
17:56	4997	12.7	2286	5.8	2396	231	
17:57	4979	12.7	2302	5.8	2409	232	
17:58	4901	12.7	2377	6.0	2397	231	
17:59	5165	13.1	2134	5.4	2422	234	
18:00	5312	13.5	1980	5.0	2398	231	
18:01	5386	13.7	1908	4.8	2432	235	
18:02	5469	13.7	1832	4.6	2474	239	
18:03	5505	14.0	1786	4.5	2474	238	
18:04	5223	13.3	2050	4.5 5.2	2407	239	
18:05	4966				2509	242	
		12.6	2313	5.8			
18:06	4786	12.2	2509	6.3	2523	244	

Number 6

Client: New Indy Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009
Operator: VD

Time	0	2	CC)2	S	O_2	
Time	mv	%	mv	%	mv	ppm	
18:07	4647	11.8	2651	6.7	2527	244	
18:08	4582	11.7	2711	6.8	2520	243	
18:09	4439	11.3	2847	7.2	2526	244	
18:10	4352	11.1	2936	7.4	2542	246	
18:11	4330	11.0	2982	7.5	2526	244	
18:12	4364	11.1	2966	7.5	2499	241	
18:13	4300	11.0	3029	7.6	2548	246	
18:14	4264	10.9	3061	7.7	2584	250	
18:15	4194	10.7	3131	7.9	2584	250	
18:16	4225	10.8	3102	7.8	2583	250	
18:17	4210	10.7	3119	7.9	2549	246	
18:18	4263	10.9	3067	7.7	2514	243	
18:19	4284	10.9	3047	7.7	2516	243	
18:20	4299	11.0	3033	7.6	2499	241	
18:21	4260	10.9	3071	7.7	2498	241	
18:22	4294	10.9	3037	7.7	2546	246	
18:23	4291	10.9	3045	7.7	2550	246	
18:24	4331	11.0	3005	7.6	2535	245	
18:25	4286	10.9	3046	7.7	2590	250	
Avgs	4594	11.7	2715	6.8	2433	235	

Number 4

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: VD

Date: 14 Oct 2021

Start Time: 13:23

 O_2

Method: EPA 3A Span Conc. 20.0 %

		Bi	as Resu	Its	
Standard	Cal.	Response	Bias	Difference	Error
Gas	%	mv	%	%	% Status
Zero	0.0	-52	0.0	0.0	0.0 / Pass
Span	10.1	3947	10.1	0.0	0.0 Pass
		Cali	bration	Drift	
Standard	Initial*	Fina	al	Difference	Drift
Gas	%	mv	%	%	% / Status
Zero	0.0	-52	0.0	0.0	0.0 / Pass
Span	10.1	3947	10.1	0.0	0.0 Pass
•	*Bias No. 3				

CO₂ Method: EPA 3A Span Conc. 19.8 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.1	58	0.2	0.1	0.5	Pass
Span	9.9	3913	9.9	0.0	0.0	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	% /	Status
Zero	0.2	58	0.2	0.0	0.0	Pass
Span	9.9	3913	9.9	0.0	0.0	Pass
•	*Bias No. 3	}			,	

Number 4

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

Calibration 1

Start Time: 13:23

SO₂

Method: EPA 6C Span Conc. 911 ppm

		Bi	as Resu	Its		
Standard Gas Zero	Cal. ppm 0	Response mv 164	Bias ppm 10	Difference ppm 10	Error % 1.1	Status Pass
Span	458	4640	453	-5	-0.5	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	ppm	mv	ppm	ppm	% /	Status
Zero	10	164	10	0	0.0	Pass
Span	452 *Bias No. 3	4640	453	1	0.1	Pass

Number 5

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Project Number: 15730.001.009

Operator: VD

Date: 14 Oct 2021

Start Time: 15:11

Calibration 1

 O_2

Method: EPA 3A Span Conc. 20.0 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	% /	Status
Zero	0.0	-48	0.0	0.0	0.0	Pass
Span	10.1	3951	10.1	0.0	0.0	Pass
		Cali	bration	Drift	1	
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	% /	Status
Zero	0.0	-48	0.0	0.0	0.0	Pass
Span	10.1	3951	10.1	0.0	0.0	Pass
•	*Bias No. 4	ļ				

CO₂ Method: EPA 3A Span Conc. 19.8 %

		Bi	as Resu	lts		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.1	76	0.2	0.1	0.5	Pass
Span	9.9	3913	9.9	0.0	0.0	Pass
		Cali	bration	Drift	1.	
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.2	76	0.2	0.0	0.0	Pass
Span	9.9	3913	9.9	0.0	0.0 /	Pass
•	*Bias No.	4			<i>y</i>	

Number 5

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

Start Time: 15:11

SO₂

Method: EPA 6C Span Conc. 911 ppm

		Bi	as Resu	lts	
Standard Gas Zero Span	Cal. ppm 0 458	Response mv 177 4700	Bias ppm 11 459	Difference ppm 11 1	Error % Status 1.2 Pass 0.1 Pass
		Cali	bration	Drift	
Standard	Initial*	Fina	al	Difference	Drift
Gas	ppm	mv	ppm	ppm	% Status
Zero	10	177	11	1	0.1 / / Pass
Span	453	4700	459	6	0.7 Pass

Number 6

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

Start Time: 16:48

 O_2

Method: EPA 3A Span Conc. 20.0 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.0	-49	0.0	0.0	0.0	Pass
Span	10.1	3957	10.1	0.0	0.0	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.0	-49	0.0	0.0	0.0	Pass
Span	10.1	3957	10.1	0.0	0.0	Pass
-	*Bias No. 5	5				

CO₂ Method: EPA 3A Span Conc. 19.8 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.1	64	0.2	0.1	0.5	Pass
Span	9.9	3912	9.9	0.0	0.0	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.2	64	0.2	0.0	0.0	Pass
Span	9.9	3912	9.9	0.0	0.0 /	Pass
	*Bias No. 5					

Number 6

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: VD

Date: 14 Oct 2021

Start Time: 16:48

SO₂

Method: EPA 6C Span Conc. 911 ppm

		Bi	as Resu	lts		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	ppm	mv	ppm	ppm	% /	Status
Zero	0	165	10	10	1.1	Pass
Span	458	4709	460	2	0.2	Pass
		Cali	ibration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	ppm	mv	ppm	ppm	% /	Status
Zero	11	165	10	-1	-0.1	Pass
Span	459	4709	460	1	0.1	Pass
-	*Bias No. 5)				

Number 7

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

Start Time: 18:26

 O_2

Method: EPA 3A Span Conc. 20.0 %

		Bi	as Resu	lts		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	% /	Status
Zero	0.0	-61	0.0	0.0	0.0	Pass
Span	10.1	3941	10.1	0.0	0.0	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.0	-61	0.0	0.0	0.0 //	Pass
Span	10.1	3941	10.1	0.0	0.0	Pass
•	*Bias No. 6					

CO₂ Method: EPA 3A Span Conc. 19.8 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.1	78	0.2	0.1	0.5	Pass
Span	9.9	3918	9.9	0.0	0.0	Pass
	×	Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.2	78	0.2	0.0	0.0	Pass
Span	9.9	3918	9.9	0.0	0.0	Pass
-	*Bias No. 6					

Number 7

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

1 10

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

Calibration 1

Start Time: 18:26

SO₂

Method: EPA 6C Span Conc. 911 ppm

		Bi	as Resu	Its		
Standard Gas	Cal. ppm 0	Response mv 137	Bias ppm 8	Difference ppm 8	Error % / 0.9	Status Pass
Zero Span	458	4588	448	-10	-1.1	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	ppm	mv	ppm	ppm	%	Status
Zero	10	137	8	-2	-0.2 🗸 /	Pass
Span	460	4588	448	-12	-1.3 ✓	Pass

CALIBRATION DATA

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

Start Time: 07:50

 O_2

Method: EPA 3A

Calibration Type: Linear Regression

% Zero 10.1 20.0	Calibration Results Cylinder ID - EB0062273 CC335419	Result, mv -55 3952 7915	
Slope 398.7	Curve Coefficients Intercept -67	Corr. Coeff. >0.9999	1

CO₂

Method: EPA 3A

Calibration Type: Linear Regression

% Zero 10.2 / 19.8 /	Calibration Results Cylinder ID - EB0062273 CC335419	Result, mv 49 3913 7940
Slope 398.2	Curve Coefficients Intercept -10	Corr. Coeff. 0.9996 /

CALIBRATION DATA

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

Start Time: 07:50

SO₂

Method: EPA 6C

Calibration Type: Linear Regression

	Calibration F	Results
ppm	Cylinder	ID Result, mv
Zero	_	59
458	/ EB01080	003 4692
911	CC2590	60 9262

Curve Coefficients

Slope 10.11

Intercept 61 **Corr. Coeff.** >0.9999

CALIBRATION ERROR DATA

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 14 Oct 2021

Start Time: 07:50

 O_2

Method: EPA 3A Span Conc. 20.0 %

Slope 398.7

Intercept -66.8

Standard %	Response mv	Result %	Difference %	Error	Status
Zero	-55	0.0	0.0	0.0	Pass
10.1	3952	10.1	0.0	0.0	Pass
20.0	7915	20.0	0.0	0.0	Pass

 CO_2

Method: EPA 3A Span Conc. 19.8 %

Slope 398.2

Intercept -10.4

Standard % Zero 10.2 19.8	Response mv 49 3913 7940	Result % 0.1 9.9 20.0	Difference % 0.1 -0.3 0.2	Error % 0.5 / -1.5 /	Status Pass Pass Pass
19.8	7940	20.0	0.2	1.0	Pass

SO₂

Method: EPA 6C Span Conc. 911 ppm

Slope 10.11

Intercept 61

Standard ppm	Response mv	Result ppm	Difference ppm	Error %	Status
Zero	59	0	0	0.0 /	Pass
458	4692	458	0	0.0	Pass
911	9262	911	0	0.0	Pass

METHODS AND ANALYZERS

Client: New Indy Project Number: 15730.001.009

Location: Catawba, SC Operator: VD

Source: No. 2 Combination Boiler Date: 14 Oct 2021

File: C:\Data\211014 New Indy Catawba No. 2 Combination Boiler.cem Program Version: 2.2, built 3 Jul 2020 File Version: 2.04

Computer: WSTRLXX-PC Trailer: 88
Analog Input Device: MCC USB-1608G

Channel 1

Analyte O₂

Method **EPA 3A**, Using Bias Analyzer Make, Model & Serial No. **CAI 600 s/n: E08008-M**

Full-Scale Output, mv
Analyzer Range, %
Span Concentration, %
10000
20.0

Channel 2

Analyte CO₂

Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. CAI 600 s/n: E08008-M

Full-Scale Output, mv
Analyzer Range, %
Span Concentration, %
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000

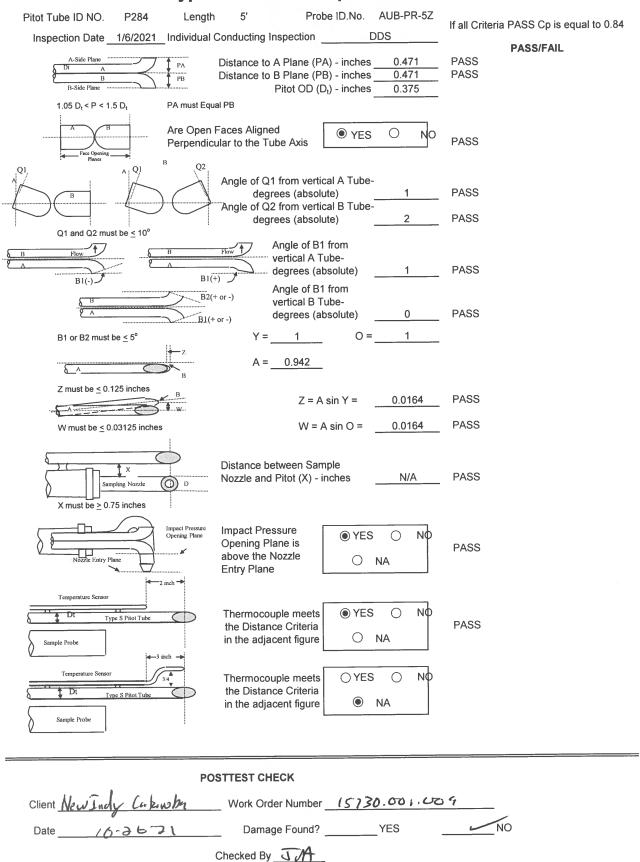
Channel 5

Analyte SO₂

Method EPA 6C, Using Bias

Analyzer Make, Model & Serial No. **Teledyne T100H SN410** Full-Scale Output, mv **10000**

Analyzer Range, ppm
Span Concentration, ppm
911


APPENDIX D QUALITY CONTROL DATA

EQUIPMENT CALIBRATIONS

S - Type Pitot Tube Inspection Data Form

WESTERN .

Stack Temperature Sensor Calibration Data

	Choose Reference Thermometer Below:
	Digital Thermometer - Omega Model CL3515R (Serial# 06000183)
/	Digital Thermometer - Omega Model CL3515R (Serial# 12000230)

Thermocouple Number: AUB-PR-5Z

Length:

6-Jan-21

Ambient Temperature,°F:

57

Calibrator:

DDS

Reference Point		Reference Temperature	Thermocouple Temperature		Temperature Difference		
Numbe	er	° F	° F		%		
1 - /		58	58		0.00		
В		58	58		0.00		
C		58	58		0.00		
2 - /		38	39		0.20		
В		38	39		0.20		
C		38	39		0.20		
	4	211	211		0.00		
В		211	211		0.00		
C		211	211		0.00		
Temp	Diff (%) =	(Ref Temp, °F + 460) - (Therm Temp	°F + 460) x 10	0		
			p,° F + 460				
	Are all t	emperature differences l	ess than +/- 1.5% ?	YES			

POSTTEST STACK TEMPERATURE SENSOR CALIBRATION DATA

Client: NI Catawha

Work Order Number: 15770.001,001 Date: 10.96.31

Calibrator: TA

Temperature Reference Thermocouple Ambient Temp,° F Diff, % Temp,° F Temp,° F

Was a pretest temperature correction used?

Is temperature difference within +/- 1.5% yes

If no, calculations done once with recorded values and once with corrected values _____

AO25-6 Point - 5-14-2021

METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES

Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.

Integrated Air Services

- 2) Record barometric pressure before and after calibration procedure. 7
- Run at tested vacuum (from Orifice Calibration Report), for a period of time 3
 - necessary to achieve a minimum total volume of 5 cubic feet.
- 4) Record readings in colored boxes below, other columns are automatically calculated.

Barometer ID 200567181	(4)	ΔH@		1.900	1.943	2.102	2.028	2.137	2.183	2.049
ω [[]]	(3)	· >		1.005	1.001	1.001	1.001	0.997	0.998	1.000
AVG (P _{ber}) 29.59	(2)	V _{cr} (STD)		8.288	8.552	17.437	15.293	8.793	14.933	AVG =
FINAL 29.59	3	V _m (STD)		8.248	8.547	17.412	15.285	8.821	14.969	
29.59	DGM ∆H	(in H ₂ O)		0.30	0.64	1.20	1.60	2.95	4.40	
SURE (in Hg): Calibrated by:	ELAPSED TIME (MIN)	θ		28	20	31	23	10	14	
BAROMETRIC PRESSURE (in Hg): Calibrated by:	ELAPSED Ava DGM F° TIME (MIN)	F		71	7.1	74	69	73	72	
BAROME	DGM F°	FINAL		71	71	74	69	73	72	
	DG	INITIAL FINAL		70	71	73	89	72	72	
	AMBIENT	٩Ł		69	70	17	89	71	71	
SERIAL #: 9717.61 SERIAL #: 1331s & 1825	(2)	NET (V _m)		8.372	8.676	17.733	15.406	8.928	15.083	
	DGM READINGS (FT³)	FINAL		937.472	946.387	989.873	928.906	971.830	962.183	
METER CRITICAL ORIFICE SET	90	INITIAL		929.100	937.711	972.140	913.500	962.902	947.100	
	TESTED	(in Hg)		23	21	21	19	17	15	
DATE: 14-May-2021	K. FACTOR			0.2300	0.3326	0.4379	0.5162	0.6846	0.8304	
DATE:		RUN #			7	ю	4	2	9	J
DATE: METER PART #:		ORIFICE #		80	12	16	19	52	31	

USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: The following equations are used to calculate the standard volumes of air passed through the DGM, $V_{\rm m}$ (std), and the critical orifice, $V_{\rm cr}$ (std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above.

PASS PASS

> Individual ∆H_@ values 0.15 from average? Individual Y's .02 from average?

Average Y value +/-.02 of 1.000?

PASS

= Net volume of gas sample passed through DGM, corrected to standard conditions $T_m = Absolute DGM avg. temperature (<math>^{\circ}R$ - English, $^{\circ}K$ - Metric) $K_1 = 17.64$ °R/in. Hg (English), 0.3858 °K/mm Hg (Metric) P_{bar} + (ΔH/13.6) χ , π V_m (std) =

 \equiv

P_{bar} θ ¥ V_{cr} (std) =

(5)

= Volume of gas sample passed through the critical orifice, corrected to standard conditions

 $T_{amb} = Absolute$ ambient temperature (°R - English, °K - Metric) K' = Average K' factor from Critical Orifice Calibration

 DGM calibration factor V_m (std) V_{cr} (std) **"** ≻

(e)

ΔH 0.0319 T_m Θ²

= ®H∇

(4)

P_{bar} Y² V_m²

Next Calibration Due By:

5/14/2022

CALIBRATION GAS CERTIFICATES

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number:

E03NI80E15A0138

Cylinder Number:

EB0062273

Laboratory:

124 - Durham (SAP) - NC

PGVP Number:

Gas Code:

CO2,O2,BALN

B22021

Cylinder Pressure:

Reference Number: 122-402016392-1

Cylinder Volume:

150.9 CF 2015 PSIG

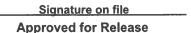
Valve Outlet:

590

Certification Date:

Feb 01, 2021

Expiration Date: Feb 01, 2029


Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

			ANALYTICA	L RESULTS		
Compon	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON	DIOXIDE	10.00 %	10.16 %	G1	+/- 0.6% NIST Traceable	02/01/2021
OXYGEN		10.00 %	10.14 %	G1	+/- 0.5% NIST Traceable	02/01/2021
NITROGE	N	Balance				, , , , , , , , , , , , , , , , , , ,
			CALIBRATION	N STANDARD	S	
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date
NTRM	13060638	CC414571	13,359 % CARBON E	DIOXIDE/NITROGEN	+/- 0.6%	May 14, 2025

NTRM	10010616	K014963	9.967 % OXYGEN/NITROGEN	+/- 0.3%	Apr 19, 2022
Instrume	ent/Make/Model		ANALYTICAL EQUIPMENT Analytical Principle	Last Multipoint	Calibration
Horiba VA	Horiba VA-5001 CO2 BF89GV17		Nondispersive Infrared (NDIR)	Jan 06, 2021	
Horiba MF	Horiba MPA510 O2 41499150042		Paramagnetic	Jan 07, 2021	

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number:

E03NI60E15A0286

Reference Number: 122-401215331-1

Cylinder Number:

CC335419

Cylinder Volume: Cylinder Pressure: 159.6 CF

Laboratory:

124 - Durham (SAP) - NC

PGVP Number:

Valve Outlet:

2015 PSIG 590

B22018

Certification Date:

Jun 04, 2018

Gas Code:

CO2,O2,BALN

Expiration Date: Jun 04, 2026

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

> Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals. **ANALYTICAL RESULTS**

Compone	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON (DIOXIDE	20.00 %	19.81 %	G1	+/- 0.6% NIST Traceable	
OXYGEN NITROGEI	N	20.00 % Balance	19.99 %	G1	+/- 0.3% NIST Traceable	06/04/2018
Туре	Lot ID	Cylinder No	CALIBRATION Concentration	STANDARD	S Uncertainty	Expiration Date
NTRM	12061508	CC354696	19.87 % CARBON D	IOXIDE/NITROGEN	+/- 0.6%	Jan 11, 2024
Instrument/Make/Model			ANALYTICAL EQUIPMENT Analytical Principle		Γ Last Multipoint Cal	ibration
Horiba VIA510 CO2 2L6YXWY0			Nondispersive Infrared (NDIR)		May 10, 2018	
Horiba MPA510 O2 41499150042			Paramagnetic		May 10, 2018	

Airgas Specialty Gases Airgas USA, LLC 630 United Drive Durham, NC 27713 Airgas.com

15730.001.009 #1-2 CBs SO₂

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number:

E02NI99E15A0259

Cylinder Number:

EB0108003

Laboratory:

124 - Durham (SAP) - NC

PGVP Number:

B22020

Gas Code:

SO2, BALN

Reference Number:

122-401777520-1

144.4 CF

Cylinder Volume: Cylinder Pressure:

2015 PSIG

Valve Outlet:

660

Certification Date:

Apr 06, 2020

Expiration Date: Apr 06, 2028

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

ANALYTICAL RESULTS								
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates			
SULFUR DIOXIDE NITROGEN	450.0 PPM Balance	457.9 PPM	G1	+/- 0.8% NIST Traceable	03/30/2020, 04/06/2020			
Type Lot	t ID Cylind		TON STANI	OARDS Uncertainty	Expiration Date			
			CAL EQUIP					
Instrument/Make/N	Model	Analytical Principle		Last Multipoint Calibration				
Nicolet 6700 AHR080	1549 SO2	FTIR		Apr 02, 2020				

Airgas Specialty Gases Airgas USA, LLC 630 United Drive Durham, NC 27713 Airgas.com

15730.001.009 #1-2 CBs SO₂ Emission Report

CERTIFICATE OF ANALYSIS

Grade of Product: EPA Protocol

Part Number:

E02NI99E15A0051

Cylinder Number:

CC259060

Laboratory: PGVP Number:

Gas Code:

124 - Durham (SAP) - NC

B22020 SO2,BALN Reference Number: 122-401777522-1

Cylinder Volume: Cylinder Pressure: 144.4 CF 2015 PSIG

Valve Outlet:

660

Certification Date:

Apr 07, 2020

Expiration Date: Apr 07, 2028

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals

			ANALYTI	CAL RESU	LTS		
Component		Requested Concentration	Actual Concentration	Protocol Method		Relative tainty	Assay Dates
SULFUR D		900.0 PPM Balance	910.7 PPM	G1	+/- 0.7	% NIST Traceable	03/31/2020, 04/07/2020
Туре	Lot ID	Cylinder No	CALIBRATION Concentration	ON STANI	DARDS	Uncertainty	Expiration Date
NTRM	16060235	CC470222	995.8 PPM SULFI	JR DIOXIDE/NI	TROGEN	+/- 0.7%	Nov 10, 2021
Instrume	nt/Make/Mo	del	ANALYTICA Analytical Prin	_	MENT	Last Multipoint Cal	ibration
Nicolet 6700 AHR0801549 SO2			FTIR			Apr 02, 2020	

APPENDIX D

CYCLONIC FLOW CHECKS

Determination of Stack Gas Velocity - Method 2

	Client	New	v Indy	Source	No. 1 Combi	nation Boiler	Pitot Coe	ff (C _p)	0.84
	_ocation/Plant	Cataw	vba, SC	W.O. Number	15730.0	001.009	Stack Area (A	A _s), ft ²	78.54
	Operator	RS		Date	10-13-	-21	Pitot/Ther	mo ID P	284 /A02
			Run Number	Pre R	10-13-	5			
			Time						
		Barometric Pre	ess (P _{bar}), in Hg*	29,	7				
		Static P	Press (P _g), in H ₂ 0	-1,2					
		Source M	loisture (B _{ws}), %						
			O ₂ , %						
			CO ₂ , %						
	ic Flow nination	Traverse	e Location		eck good ?		eck good ?	Leak	Check good ?
	Angle				Source	Tanana A	Source	4.0	Source
∆p at 0°	yielding Δp = 0	Port	Point	Δp, in H ₂ O	Temperature (T _s), °F	Δp, in H ₂ O	Temperature (T _s), °F	Δp, in H ₂ O	Temperature (T _s), °F
,04	7	A	1	4					
-04	7		2					2 mg 110 22	
.05	9		3						
.03	5		4					tion area	
101	6	В	1	q.					
104	5		2						
.03	5		3						We consider the
-03	7		4						
.05	9	С	1						
.02	7		2	3					
-02	4		3						
.02	3		4						
.07	6	D	1						
.06	5		2	18.					
.03	5		3						
.02	5		4						
Avg Angle	120		Avg ∆p & Temp						
			Avg √∆p						
			m velocity, ft/sec						
			onditions, acf/min						
			nditions, dscf/min						
M _s =		0.44 x %CO ₂ + / 100) + 18 x B _v	0.28 x (100% - (% _{ws} / 100	O ₂ + %CO ₂))			ecular weight soul		

 $P_s = P_{bar} + P_g / 13.6$

 $V_s = 85.49 \times C_p \times \sqrt{\Delta p_{avq}} \times \sqrt{(T_{s(abs)} / (P_s \times M_s))}$

Comments

Q_{act} = 60 x V_s x A_s Q_{sd} = Q_{act} x 17.64 x (1 - B_{ws} / 100) x P_s / T_{s(abs)}

*Barometric Pressure is at port elevation

T_{s(abs)} = Source Temperature, absolute(°R)

P_s = Absolute stack static pressure, inches Hg.

V_s = Average gas stream velocity, ft/sec.

Q_{act} = Volumetric flow rate of wet stack gas at actual, wacf/min

Q_{sd} = Volumetric flow rate of dry stack gas at standard conditions,

Determination of Stack Gas Velocity - Method 2

	Client	New	Indy	Source	No. 2 Combi	nation Boiler	Pitot Coe	ff (C _p)	0.84
	Location/Plant	Cataw	ba, SC	W.O. Number	15730.0	001.009	Stack Area (A	λ _s). ft ²	78.54
	Operator	RS		Date	16-14	-21	Pitot/Ther	mo ID	74 /A025
			Run Number	Pre R		129/			
			Time		*				
		Barometric Pre	ess (P _{bar}), in Hg*	29.	65				
		Static P	ress (P _g), in H ₂ 0	-1.1					
		Source M	oisture (B _{ws}), %						
			O ₂ , %						
			CO ₂ , %						
	ic Flow ination	Traverse	Location	Leak Ch	eck good ?		eck good ?		ck good ?
Δp at 0°	Angle yielding $\Delta p = 0$	Port	Point	Δp, in H₂O	Source Temperature (T _s), °F	Δp, in H₂O	Source Temperature (T _s), °F	Δp, in H ₂ O	Source Temperature (T _s), °F
06	9	Α	1		D.A. A. Page				
06	7		2						
05	9		3						
05	5		4						
-05	7	В	1						
4	7		2						
-04	5		3						
-04	5		4						
03	5	С	1	•					
.05	6		2						
-06	6		3						
.04	4		4						
-05	7	D	1			Company of the Company			
·u	7	Vu starenile	2			Carrier Sup			
.03	4		3		*				
03	4		4						
vg Angle	420		Avg ∆p & Temp				2012		
			Avg √∆p						
	Av	erage gas strean	n velocity, ft/sec.						
	Vol. flow	rate at actual co	nditions, acf/min						
	Vol. flow rate	e at standard con	ditions, dscf/min						
$M_s = T_{s(abs)} =$		/ 100) + 18 x B _w	0.28 x (100% - (% _s / 100	O ₂ + %CO ₂))		M _s = Wet mole	cular weight sour ecular weight sour e Temperature, a	rce gas, lb/lb-mo	

 $V_s = 85.49 \times C_p \times \sqrt{\Delta p_{avg}} \times \sqrt{(T_{s(abs)} / (P_s \times M_s))}$

Q_{act} = 60 x V_s x A_s Q_{sd} = Q_{act} x 17.64 x (1 - B_{ws} / 100) x P_s / T_{s(abs)}

*Barometric Pressure is at port elevation

P_s = Absolute stack static pressure, inches Hg.

 V_s = Average gas stream velocity, ft/sec. Q_{act} = Volumetric flow rate of wet stack gas at actual, wacf/min Q_{sd} = Volumetric flow rate of dry stack gas at standard

conditions,

Comments

STRATIFICATION AND RESPONSE TIME CHECKS

APPENDIX D

No. 1 Combination Boiler

WO# 15730.001.009 Source: No. 1 Combination Boiler Operating load: Normal

Operating load

Source

Client:

New Indy

10/12/2021

Location: Catawba, SC

Port		Point	02	% difference from Mean	Absolute difference	CO2	% difference from Mean	Absolute difference	SO2	% difference from Mean	Absolute difference
D	1	1	11.05	3.7%	0.396	8.10	2.7%	0.221	234.0	8.5%	18.250
		2	10.85	1.8%	0.196	8.25	0.9%	0.071	234.0	8.5%	18.250
	/	3	10.70	0.4%	0.046	8.40	1.0%	0.079	226.0 v	4.8%	10.250
С	V	1	10.45	1.9%	0.204	8.50	2.2%	0.179	209.5	2.9%	6.250
		2	10.65	0.0%	0.004	8.15	2.1%	0.171	202.0	6.4%	13.750
		3	10.60		0.054	8.35	0.4%	0.029	190.5	/ 11.7%	25.250
В		1	10.35		0.304	8.65	4.0%	0.329	186.0	13.8%	29.750
		2	10.70	0.4%	0.046	8.25		0.071	201.0	6.8%	14.750
	/	3	10.80		0.146	8.10		0.221	206.0	4.5%	9.750
Α		1	10.95	2.8%	0.296	7.95		0.371	219.5	1.7%	3.750
		2	10.35	2.9%	0.304	8.45 1	1.6%	0.129	232.0	7.5%	16.250
		3	10.40	/	0.254	8.70	4.6%	0.379	248.5	15.2%	32.750
Mean:			10.65			8.32 🗸			215.75		

	Compliance Testing
Results	Not Stratified per O2
Sampling Approach	Sampled at single point which most closely represented the mean

	EPA Part 60 Testing
Results	Not Stratified per O2
Sampling Approach	Sampled at 0.4m, 1.0m and 2.0m from stack wall or sampled at 16.7%, 50%, and 83.3% of duct diameter

	EPA Part 75 Testing
Results	Not Stratified per O2
Sampling Approach	Sampled at single point located no less than 1m from the stack wall and located on the same line as the traverse test

Per EPA Method 7E, a 12 point traverse was conducted to measure for stratification of the flue gas. According to Method 7E, the gas stream can stratified, minimally stratified, on not stratified. If at each point any pollutant or diluent is determined to be less than 5% or 0.5 ppm different than the mean concentration, the source is not stratified. If at each point any pollutant or diluent is determined to be greater than 5% but less than 10% or greater than 0.5 ppm but less than 1.0 ppm different than the mean concentration, the source is minimally stratified. If at any point the pollutants and diluents are greater than 10% or 1.0 ppm different than the mean concentration, the source is stratified.

Per EPA Part 60, a 12 point traverse was conducted to measure for stratification of the flue gas. If at each point any pollutant or diluent is determined to be less than 10% different than the mean concentration, the source is not stratified. If at any point the pollutants or diluents are greater than 10% different than the mean concentration, the source is stratified.

Per EPA Part 75, a 12 point traverse was conducted to measure for stratification of the flue gas. If at each point any pollutant or diluent is determined to be less than 5% different than the mean concentration, the source is not stratified. If at any point the pollutants are determined to be less than 3.0 ppm less than 3.0 ppm or the diluents determined to be less than 0.3% different than the mean concentration, the source is not stratified. If at any point the pollutants or diluents are greater than 5%, the pollutants are greater than 3.0 ppm, or the diluents are greater than 0.3% different than the mean concentration the source is stratified.

m

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

111		O_2		CC			O ₂	
	me	mv	%	mv	%	mv	ppm	

Doononoo	_		ation C		urina fir	ot bios
Response	s rime = s selecte					
1 01116	Scient	-	D Point		· mouro	
14:07	4603	11.6	2973	7.6	2269	235
14:08	4454	11.2	3078	7.9	2334	243
14:09	4439	11.2	3076	7.9	2381	248
14:10	4413	11.1	3097	7.9	2356	245
14:11	4417	11.1	3096	7.9	2255	234
14:12	4389	11.1	3137	8.0	2210	229
14:13	4369	11.0	3187	8.2	2301	239
		Р	oint 2			
14:14	4465	11.3	3125	8.0	2346	244
14:15	4416	11.1	3130	8.0	2306	239
14:16	4389	11.1	3147	8.1	2218	230
14:17	4366	11.0	3169	8.1	2171	225
14:18	4317	10.9	3217	8.2	2216	230
14:19	4328	10.9	3209	8.2	2253	234
14:20	4288	10.8	3245	8.3	2252	234
			oint 3			
14:21	4280	10.8	3257	8.3	2180	226
14:22	4253	10.7	3281	8.4	2078	215
14:23	4250	10.7	3283	8.4	2066	213
14:24	4262	10.7	3274	8.4	2121	219
14:25	4253	10.7	3279	8.4	2212	229
14:26	4252	10.7	3281	8.4	2222	230
14:27	4230	10.7	3303	8.4	2141	222
		Port	_	·		
14:28	4180	10.5	3350	8.6	2076	215
14:29	4162	10.5	3365	8.6	2151	223
14:30	7753	19.5	513	1.4	1278	128
14:31	8309	20.9	35	0.2	266	18
14:32	8296	20.9	39	0.2	165	7
14:33	4228	10.7	3305	8.4	969	94
4404	4000		C Point		4050	004
14:34	4033	10.2	3483	8.9	1950	201
14:35	4074	10.3	3446	8.8	2121	219
14:36	4117	10.4	3405	8.7	2150	223
14:37	4129	10.4	3393	8.7	2091	216
14:38	4196	10.6	3329	8.5	2037	210
14:39	4180	10.5	3322	8.5	2016	208

Number 1

Client: New Indy Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Time o	C)2	CC)2	S	O_2	
Time	mv	%	mv	%	mv	ppm	
14:40	4140	10.4	3331	8.5	2040	211	
		P	oint 2				
14:41	4123	10.4	3343	8.5	2088	216	
14:42	4201	10.6	3271	8.4	2063	213	
14:43	4430	11.2	3051	7.8	1907	196	
14:44	4471	11.3	2987	7.7	1852	190	
14:45	4354	11.0	3069	7.9	1863	191	
14:46	4223	10.6	3189	8.2	1947	201	
14:47	4249	10.7	3178	8.1	1969	203	
17.77	7270		Point 3	0.1	1000	200	
14:48	4334	10.9	3113	8.0	1877	193	
14:49	4220	10.6	3230	8.3	1733	177	
14:50	4204	10.6	3259	8.3	1724	176	
14:51	4140	10.4	3322	8.5	1790	183	
		10.4	3312	8.5	1894	195	
14:52	4152				1889	193	
14:53	4171	10.5	3295	8.4			
14:54	4231	10.7	3238	8.3	1826	187	
44.55	4404		t Chang		4700	400	
14:55	4124	10.4	3334	8.5	1790	183	
14:56	4685	11.8	2920	7.5	1643	168	
14:57	8298	20.9	47	0.3	177	8	
14:58	6424	16.2	1480	3.9	522	46	
14:59	4120	10.4	3343	8.5	1555	158	
			B Point				
15:00	4066	10.3	3396	8.7	1633	166	
15:01	4031	10.2	3429	8.8	1747	179	
15:02	3968	10.0	3486	8.9	1840	189	
15:03	3929	9.9	3523	9.0	1903	196	
15:04	4043	10.2	3422	8.7	1863	191	
15:05	4141	10.4	3349	8.6	1809	186	
15:06	4097	10.3	3390	8.7	1814	186	
		F	Point 2				
15:07	4086	10.3	3399	8.7	1889	194	
15:08	4125	10.4	3361	8.6	1903	196	
15:09	4237	10.7	3251	8.3	1953	201	
15:10	4190	10.6	3292	8.4	1917	197	
15:11	4268	10.8	3221	8.2	1863	191	
15:12	4304	10.8	3180	8.1	1912	197	
15:13	4214	10.6	3268	8.4	1992	205	
			Point 3				
15:14	4197	10.6	3282	8.4	1977	204	
10.14	. 107	. 5.5	0_0_	٠. ١			

Number 1

Client: New Indy Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009
Operator: VD

Timo	C	2	CC)2	SC	O_2	
Time	mv	%	mv	%	mv	ppm	
15:15	4274	10.8	3207	8.2	1986	205	
15:16	4236	10.7	3244	8.3	1944	200	
15:17	4238	10.7	3242	8.3	1894	195	
15:18	4231	10.7	3245	8.3	1922	198	
15:19	4254	10.7	3224	8.2	2005	207	
15:20	4341	10.9	3140	8.0	1991	205	
10.20	1011		t Chang		1001		
15:21	4381	11.0	3102	7.9	1915	197	
15:22	4444	11.2	3040	7.8	1906	196	
15:23	7351	18.5	796	2.1	1457	147	
15:24	8300	20.9	31	0.2	412	34	
15:25	8304	20.9	26	0.2	210	12	
			1346				
15:26	6569	16.5		3.5	286	20	
45.07	4000		A Point		4754	400	
15:27	4338	10.9	3105	7.9	1754	180	
15:28	4334	10.9	3111	8.0	2098	217	
15:29	4265	10.8	3178	8.1	2242	233	
15:30	4200	10.6	3241	8.3	2297	238	
15:31	4245	10.7	3202	8.2	2255	234	
15:32	4310	10.9	3140	8.0	2113	219	
15:33	4360	11.0	3092	7.9	2127	220	
			Point 2				
15:34	4376	11.0	3079	7.9	2179	226	
15:35	4456	11.2	3005	7.7	2231	231	
15:36	4496	11.3	2967	7.6	2283	237	
15:37	4474	11.3	2986	7.6	2231	231	
15:38	4465	11.3	2978	7.6	2176	225	
15:39	4488	11.3	2954	7.6	2232	231	
15:40	4526	11.4	2917	7.5	2329	242	
15:41	4610	11.6	2839	7.3	2338	243	
15:42	4623	11.7	2829	7.3	2281	237	
15:43	4586	11.6	2850	7.3	2209	229	
15:44	4550	11.5	2876	7.4	2232	231	
15:45	4535	11.4	2889	7.4	2323	241	
15:46	4476	11.3	2945	7.5	2371	247	
15:47	4476	11.3	2949	7.6	2284	237	
15:48	4513	11.4	2915	7.5	2177	225	
15:49	4391	11.1	3030	7.8	2201	228	
15:50	4410	11.1	3013	7.7	2250	233	
15:51	4354	11.0	3061	7.8	2313	240	

Number 1

Client: New Indy Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: **15730.001.009**Operator: **VD**

Times	C	2	CC)2	S	O_2	
Time	mv	%	mv	%	mv	ppm	
15:53	4294	10.8	3121	8.0	2167	224	
15:54	4343	10.9	3075	7.9	2164	224	
15:55	4338	10.9	3079	7.9	2161	224	
15:56	4295	10.8	3119	8.0	2243	233	
15:57	4271	10.8	3148	8.1	2252	234	
15:58	4277	10.8	3143	8.0	2136	221	
15:59	4283	10.8	3140	8.0	2093	216	
16:00	4196	10.6	3224	8.2	2114	219	
16:01	4142	10.4	3277	8.4	2200	228	
16:02	4099	10.3	3315	8.5	2270	236	
, , , , ,			Point 3				
16:03	4106	10.4	3310	8.5	2280	237	
16:04	4079	10.3	3337	8.5	2236	232	
16:05	4010	10.1	3397	8.7	2237	232	
16:06	3962	10.0	3446	8.8	2311	240	
16:07	3956	10.0	3449	8.8	2354	245	
16:08	3936	9.9	3466	8.9	2367	246	
16:09	3843	9.7	3553	9.1	2311	240	
16:10	3816	9.6	3589	9.2	2286	237	
16:11	3822	9.6	3597	9.2	2362	246	
16:11	3816	9.6	3604	9.2	2407	250	
16:12	3878	9.8	3550	9.1	2362	246	
16:14	3960	10.0	3493	8.9	2250	233	
16:15	3872	9.8	3580	9.1	2213	229	
16:16	3828	9.7	3636	9.3	2256	234	
16:17	3961	10.0	3534	9.0	2324	241	
	3958	10.0	3542	9.0	2376	247	
16:18					2282	237	
16:19	4050	10.2	3461	8.8			
16:20	4079	10.3	3430	8.8	2204	228	
16:21	4061	10.2	3440	8.8	2221	230	
16:22	3962	10.0	3534	9.0	2336	243	
16:23	3965	10.0	3530	9.0	2416	251	
16:24	3923	9.9	3577	9.1	2371	247	
16:25	3863	9.7	3639	9.3	2291	238	
16:26	3906	9.9	3617	9.2	2290	238	
16:27	3921	9.9	3605	9.2	2362	246	
16:28	4007	10.1	3525	9.0	2430	253	
16:29	4069	10.3	3472	8.9	2421	252	
16:30	4108	10.4	3439	8.8	2334	243	
16:31	4086	10.3	3457	8.8	2230	231	
16:32	4117	10.4	3430	8.8	2256	234	

Number 1

Client: New Indy Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: **15730.001.009**

Operator: **VD**

Time	C)2	CC	O_2	S	02
Time	mv	%	mv	%	mv	ppm
16:33	4139	10.4	3407	8.7	2352	244
16:34	4138	10.4	3408	8.7	2433	253
Avgs	4433	11.2	3088	7.9	2027	209

BIAS Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Project Number: 15730.001.009

Operator: **VD**

Date: 12 Oct 2021

Start Time: 12:06

Calibration 1

 O_2

Method: EPA 3A Span Conc. 20.0 %

		Bi	as Resu	Its		
Standard Gas	Cal. %	Response mv	Bias %	Difference %	Error	Status
Zero	0.0	-2	0.0	0.0	0.0	Pass
Span	10.1	4004	10.1	0.0	0.0	Pass

CO₂

Method: EPA 3A Span Conc. 19.8 %

		Bi	as Resu	lts		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.1	-0	0.1	0.0	0.0	Pass
Span	9.9	3863	9.9	0.0	0.0	Pass

SO₂

Method: EPA 6C Span Conc. 911 ppm

		Bi	as Resu	lts		
Standard Gas	Cal. ppm	Response mv	Bias ppm	Difference ppm	Error %	Status
Zero	6	150	5	-1	-0.1 /	Pass
Span	445	4135	438	-7	-0.8	Pass

BIAS AND CALIBRATION DRIFT

Number 2

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Project Number: 15730.001.009

Operator: **VD**

Date: 12 Oct 2021

Start Time: 16:36

Calibration 1

 O_2

Method: EPA 3A Span Conc. 20.0 %

		Bi	as Resu	lts		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.0	1	0.0	0.0	0.0	Pass
Span	10.1	3988	10.1	0.0	0.0	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.0	1	0.0	0.0	0.0	Pass
Span	10.1	3988	10.1	0.0	0.0	Pass
Opan						

CO₂ Method: EPA 3A

Span Conc. 19.8 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.1	32	0.2	0.1	0.5 /	Pass
Span	9.9	3896	9.9	0.0	0.0	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.1	32	0.2	0.1	0.5	Pass
Span	9.9	3896	9.9	0.0	0.0	Pass
-	*Bias No. 1					

BIAS AND CALIBRATION DRIFT

Number 2

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Pro

Project Number: 15730.001.009

Operator: **VD**

Date: 12 Oct 2021

Calibration 1

SO₂

Start Time: 16:36

Method: EPA 6C Span Conc. 911 ppm

		Bi	as Resu	Its			
Standard Gas Zero Span	Cal. ppm 6 445	Response mv 153 4127	Bias ppm 6 437	Difference ppm 0 -8	Error % 0.0 -0.9	Status Pass Pass	
Standard Gas	Initial*		ibration		Drift %	Status	

ppm 5 0.1 **Pass** Zero 153 6 1 **Span** 438 4127 437 -1 -0.1 **Pass** *Bias No. 1

4

CALIBRATION DATA

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Project Number: 15730.001.009

Operator: **VD**

Date: 12 Oct 2021

Start Time: 11:43

 O_2

Method: EPA 3A

Calibration Type: Linear Regression

Calibration Results

**Cylinder ID Result, mv

Zero - -4

10.1 EB0062273 3992

20.0 CC335419 7960

Curve Coefficients

Slope 398.4

Intercept -18

Corr. Coeff. >0.9999

CO₂

Method: EPA 3A

Calibration Type: Linear Regression

Calibration Results

**Cylinder ID Result, mv

Zero - -4

10.2 EB0062273 3873

19.8 CC335419 7887

Curve Coefficients

Slope 398.2

Intercept -59

Corr. Coeff. 0.9997

and

CALIBRATION DATA

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Project Number: 15730.001.009

Operator: **VD**

Date: 12 Oct 2021

Start Time: 11:43

SO₂

Method: EPA 6C

Calibration Type: Linear Regression

C	alibration Results		
ppm	Cylinder ID	Result, mv	
Zero /	-	159	
458 🗸 /	EB0108003	4199	
911	CC259060	8551	
C	Curve Coefficients		

Slope In 9.214

Intercept 100 Corr. Coeff. 0.9997

CALIBRATION ERROR DATA

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 1 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 12 Oct 2021

Start Time: 11:43

02

Method: EPA 3A Span Conc. 20.0 %

Slope 398.4

Intercept -18.4

Standard %	Response mv	Result %	Difference %	Error %	Status
Zero	-4	0.0	0.0	0.0	Pass
10.1	3992	10.1	0.0	0.0	Pass
20.0	7960	20.0	0.0	0.0	Pass

CO₂

Method: EPA 3A Span Conc. 19.8 %

Slope 398.2

Intercept -59.2

Standard %	Response mv	Result %	Difference %	Error %	Status
Zero	-4	0.1	0.1	0.5 🗸	Pass
10.2	3873	9.9	-0.3	-1.5	Pass
19.8	7887	20.0	0.2	1.0	Pass

SO₂

Method: EPA 6C Span Conc. 911 ppm

Slope 9.214

Intercept 100

Standard ppm Zero	Response mv 159	Result ppm 6	Difference ppm 6	Error % 0.7 ✓	Status Pass
458	4199	445	-13	-1.4	Pass
911	8551	917	6	0.7	Pass

METHODS AND ANALYZERS

Client: New Indy Project Number: 15730.001.009

Location: Catawba, SC Operator: VD

Source: No. 1 Combination Boiler Date: 12 Oct 2021

File: C:\Users\Dubayv\Desktop\new indy\211012 New Indy Catawba No. 1 Combination Boiler Strat.cem

Program Version: 2.2, built 3 Jul 2020 File Version: 2.04

Computer: WSTRLXX-PC Trailer: 88
Analog Input Device: MCC USB-1608G

Channel 1

Analyte O₂

Method **EPA 3A**, Using Bias Analyzer Make, Model & Serial No. **CAI 600 s/n: E08008-M**

Full-Scale Output, mv
Analyzer Range, %
Span Concentration, %
10000
20.0

Channel 2

Analyte CO₂

Method **EPA 3A**, Using Bias Analyzer Make, Model & Serial No. **CAI 600 s/n: E08008-M**

Full-Scale Output, mv
Analyzer Range, %
Span Concentration, %
10000
20.0
19.8

Channel 5

Analyte SO₂

Method EPA 6C, Using Bias

Analyzer Make, Model & Serial No. **Teledyne T100H SN410**

Full-Scale Output, mv 10000 Analyzer Range, ppm 1000 Span Concentration, ppm 911

APPENDIX D

No. 2 COMBINATION BOILER

Client New Indy Location Catawba, SC Date 10/13/2021 WO# 15730.001.009 Source No. 2 Combination Boiler

Source

Port	Point	02	% difference from Mean	Absolute difference	CO2	% difference from Mean	Absolute difference		% difference rom Mean	Absolute difference
Α	1	11.20	1.9%	0.217	8.40 /	3.9%	0.313	35.0 /	5.3%	1.958
	2	11.30	1.0%	0.117	8.30	2.6%	0.213	34.0 🗸	8.0%	2.958
	3	11.40	0.1%	0.017	8.20	1.4%	0.112	38.0	2.8%	1.042
В	1	11.60	1.6%	0.183	8.05	0.5%	0.037	35.5	3.9%	1.458
	2	11.35	0.6%	0.067	8.30	2.6%	0.213	35.0	5.3%	1.958
	3	11.65	2.0%	0.233	8.00	1.1%	0.088	35.0	5.3%	1.958
С	1	11.55	1.2%	0.133	7.85	2.9%	0.238	37.0	0.1%	0.042
	2	11.40	1 , 0.1%	0.017	8.00	1.1%	0.088	36.0	2.6%	0.958
	3	11.00	3.6%	0.417	8.35	3.2%	0.262	37.5 V	1.5%	0.542
D	1	11.40	0.1%	0.017	8.00	1.1%	0.088	40.5	9.6%	3.542
	2	11.75	2.9%	0.333	7.70	4.8%	0.388	39.5	6.9%	2.542
	3	11.40	0.1%	0.017	7.90	2.3%	0.188	40.5	9.6%	3.542
Mean:		11.42			8.09			36.96		

	Compliance Testing
Results	Not Stratified per O2
Sampling Approach	Sampled at single point which most closely represented the mean

	EPA Part 60 Testing						
Results	Not Stratified per O2						
Sampling Approach	Sampled at 0.4m, 1.0m and 2.0m from stack wall or sampled at 16.7%, 50%, and 83.3% of duct diameter						

	EPA Part 75 Testing
Results	Not Stratified per O2
Sampling Approach	Sampled at single point located no less than 1m from the stack wall and located on the same line as the traverse test

Per EPA Method 7E, a 12 point traverse was conducted to measure for stratification of the flue gas. According to Method 7E, the gas stream can stratified, minimally stratified, or not stratified. If at each point any pollutant or diluent is determined to be less than 5% or 0.5 ppm different than the mean concentration, the source is not stratified. If at each point any pollutant or diluent is determined to be greater than 5% but less than 10% or greater than 0.5 ppm but less than 1.0 ppm different than the mean concentration, the source is minimally stratified. If at any point the pollutants and diluents are greater than 10% or 1.0 ppm different than the mean concentration, the source is stratified.

Per EPA Part 60, a 12 point traverse was conducted to measure for stratification of the flue gas. If at each point any pollutant or diluent is determined to be less than 10% different than the mean concentration, the source is not stratified. If at any point the pollutants or dilluents are greater than 10% different than the mean concentration, the source is stratified.

Per EPA Part 75, a 12 point traverse was conducted to measure for stratification of the flue gas. If at each point any pollutant or diluent is determined to be less than 5% different than the mean concentration, the source is not stratified. If at any point the pollutants are determined to be less than 3.0 ppm or the diluents determined to be less than 0.3% different than the mean concentration, the source is not stratified. If at any point the pollutants or diluents are greater than 5%, the pollutants are greater than 3.0 ppm, or the diluents are greater than 0.3% different than the mean concentration the source is stratified.

J NH

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Time	0	2		CO ₂		SO ₂	
Time	mv	%	mv	%	mv	ppm	

Re	Stratification Check Response Time = 3.5 minutes, timed during first bias									
				ble 1-2						
			Port A	A Point 1						
	19:21	4807	12.2	2925	7.4	323	27			
	19:22	4724	12.0	3007	7.6	399	34			
	19:23	4727	12.0	3008	7.6	403	35			
	19:24	4727	12.0	3012	7.6	408	35			
	19:25	4574	11.6	3157	8.0	412	35			
	19:26	4416	11.2	3312	8.4	411	35			
	19:27	4413	11.2	3316	8.4	405	35			
			Po	oint 2						
	19:28	4429	11.2	3301	8.4	394	34			
	19:29	4452	11.3	3281	8.3	394	34			
	19:30	4451	11.3	3279	8.3	402	34			
	19:31	4451	11.3	3280	8.3	409	35			
	19:32	4458	11.3	3272	8.3	415	36			
	19:33	4446	11.3	3287	8.3	405	35			
	19:34	4461	11.3	3269	8.3	391	33			
			P	oint 3						
	19:35	4350	11.0	3374	8.6	388	33			
	19:36	4313	10.9	3412	8.6	393	34			
	19:37	4340	11.0	3389	8.6	407	35			
	19:38	4433	11.2	3303	8.4	424	37			
	19:39	4467	11.3	3271	8.3	428	37			
	19:40	4532	11.5	3212	8.1	433	38			
	19:41	4465	11.3	3275	8.3	437	38			
				Change						
	19:42	4482	11.4	3256	8.3	430	37			
	19:43	5441	13.8	2464	6.3	401	34			
	19:44	8204	20.7	88	0.3	54	0			
	19:45	7521	19.0	648	1.7	47	0			
				B Point						
	19:46	4641	11.8	3098	7.9	325	27			
	19:47	4712	11.9	3034	7.7	376	32			
	19:48	4585	11.6	3156	8.0	416	36			
	19:49	4513	11.4	3224	8.2	417	36			
	19:50	4539	11.5	3203	8.1	414	36			
	19:51	4564	11.6	3181	8.1	422	36			
	19:52	4575	11.6	3168	8.0	404	35			

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Time	O_2		CC)2	S	O ₂	
Time	mv	%	mv	%	mv	ppm	
		F	Point 2				
19:53	4512	11.4	3232	8.2	389	33	
19:54	4526	11.5	3217	8.2	388	33	
19:55	4485	11.4	3257	8.3	398	34	
19:56	4469	11.3	3271	8.3	399	34	
19:57	4549	11.5	3196	8.1	396	34	
19:58	4521	11.5	3220	8.2	400	34	
19:59	4423	11.2	3313	8.4	416	36	
19.59	4423		Point 3	0.4	410	30	
20.00	1111			0 1	447	26	
20:00	4441	11.3	3296	8.4	417	36	
20:01	4467	11.3	3274	8.3	409	35	
20:02	4514	11.4	3229	8.2	405	35	
20:03	4476	11.4	3264	8.3	417	36	
20:04	4457	11.3	3282	8.3	423	37	
20:05	4544	11.5	3205	8.1	414	36	
20:06	4639	11.8	3111	7.9	400	34	
			t Chang				
20:07	4697	11.9	3053	7.7	400	34	
20:08	5909	14.9	2053	5.2	354	30	
20:09	8195	20.7	84	0.3	45	0	
20:10	7785	19.6	408	1.1	41	0	
20:11	4695	11.9	3045	7.7	315	26	
		Port	C Point	:1			
20:12	4621	11.7	3123	7.9	366	31	
20:13	4599	11.7	3149	8.0	409	35	
20:14	4677	11.9	3070	7.8	415	36	
20:15	4748	12.0	3001	7.6	407	35	
20:16	4783	12.1	2966	7.5	403	35	
20:17	4763	12.1	2982	7.6	408	35	
20:18	4832	12.2	2915	7.4	404	35	
20:19	4749	12.2	2951	7.5	401	34	
20:20	4728	12.0	2934	7.4	412	35	
20:21		12.0	2901	7.4	421	36	
	4759						
20:22	4725	12.0	2934	7.4	419	36	
20:23	4650	11.8	3007	7.6	421	36	
20:24	4574	11.6	3081	7.8	427	37	
20:25	4538	11.5	3118	7.9	427	37	
			Point 2				
20:26	4575	11.6	3084	7.8	426	37	
20:27	4616	11.7	3041	7.7	423	37	
20:28	4621	11.7	3037	7.7	414	36	

Number 1

Client: New Indy Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009
Operator: VD

Time	C	2	CC)2	S	02	
Time	mv	%	mv	%	mv	ppm	
20:29	4640	11.8	3023	7.7	408	35	-
20:30	4621	11.7	3040	7.7	414	36	
20:31	4616	11.7	3045	7.7	413	36	
20:32	4601	11.7	3064	7.8	407	35	
20:33	4669	11.8	2995	7.6	404	35	
20:34	4622	11.7	3035	7.7	408	35	
20:35	4564	11.6	3090	7.8	417	36	
20:36	4480	11.4	3172	8.0	417	36	
20:37	4485	11.4	3170	8.0	421	36	
20.37	4403		Point 3	0.0	421	30	
20:38	4472	11.3	3185	8.1	427	37	
20:39	4452	11.3	3205	8.1	435	38	
20:40	4458	11.3	3200	8.1	425	37	
20:41	4432	11.2	3223	8.2	426	37	
20:42	4403	11.2	3252	8.2	429	37	
20:42	4386	11.1	3270	8.3	431	37	
20:44	4291	10.9	3298	8.4	438	38	
20.44	7231		t Chang		430	30	
20:45	4244	10.8	3331	8.4	434	38	
20:46	4231	10.7	3351	8.5	435	38	
20:47	6115	15.5	1826	4.7	336	28	
20:48	8214	20.7	80	0.3	43	0	
20:49	6072	15.4	1806	4.6	165	11	
20.49	0012		D Point		103	11	
20:50	4407	11.2	3177	8.1	392	33	
20:51	4303	10.9	3276	8.3	426	37	
20:52	4347	11.0	3251	8.2	448	39	
20:52	4492	11.4	3164	8.0	466	41	
		11.4	3147	8.0	464	41	
20:54	4508 4500		3152	8.0	463	40	
20:55		11.4					
20:56	4484	11.4	3169 Point 2	8.0	464	41	
20:57	4503	11.4	3150	8.0	475	42	
20:58	4535	11.5	3121	7.9	479	42	
20:59	4618	11.7	3054	7.9 7.7	479	42	
		12.0		7.7 7.5	479	41	
21:00	4738		2962				
21:01	4779	12.1	2924	7.4	479 475	42	
21:02	4794	12.1	2909	7.4	475	42	
21:03	4773	12.1	2929	7.4	472	41	
21:04	4773	12.1	2930	7.4	478	42	
21:05	4733	12.0	2967	7.5	471	41	

Number 1

Client: New Indy Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

		Time 0	C)2	CC)2	S	O ₂	
<u> </u>	Time	mv	%	mv	%	mv	ppm		
		21:06	4674	11.8	3025	7.7	476	42	
		21:07	4747	12.0	2945	7.5	472	41	
		21:08	4808	12.2	2860	7.3	460	40	
		21:09	4749	12.0	2914	7.4	464	41	
		21:10	4724	12.0	2938	7.5	477	42	
		21:11	4650	11.8	3010	7.6	473	41	
		21:12	4635	11.8	3028	7.7	460	40	
		21:13	4621	11.7	3042	7.7	449	39	
				P	oint 3				
		21:14	4624	11.7	3039	7.7	451	39	
		21:15	4622	11.7	3039	7.7	462	40	
		21:16	4686	11.9	2980	7.6	461	40	
		21:17	4543	11.5	3061	7.8	458	40	
		21:18	4516	11.5	3074	7.8	464	41	
		21:19	4489	11.4	3100	7.9	470	41	
		21:20	4480	11.4	3107	7.9	463	40	
		Avgs	4750	12.0	2974	7.5	404	35	

BIAS Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Project Number: **15730.001.009**

Operator: **VD**

Date: 13 Oct 2021

Start Time: 18:43

Calibration 1

 O_2

Method: EPA 3A Span Conc. 20.0 %

		Bi	as Resu	Its		
Standard Gas	Cal. %	Response mv	Bias %	Difference %	Error	Status
Zero	0.0	-72	0.0	0.0	0.0 🗸	Pass
Span	10.1	3945	10.0	-0.1	-0.5	Pass

CO₂

Method: EPA 3A Span Conc. 19.8 %

		Bi	as Resu	lts		
Standard Gas	Cal. %	Response mv	Bias %	Difference %	Error /	Status
Zero	0.1	52	0.2	0.1	0.5 /	Pass
Span	9.9	3920	9.9	0.0	0.0	Pass

SO₂

Method: EPA 6C Span Conc. 911 ppm

	Bias Results								
Standard Gas	Cal. ppm	Response mv	Bias ppm	Difference ppm	Error %	Status			
Zero	1	146	9	8	0.9	Pass			
Span	457	4612	453	-4	-0.4	/ Pass			

BIAS AND CALIBRATION DRIFT

Number 2

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Project Nui

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Start Time: 21:21

Calibration 1

 O_2

Method: EPA 3A Span Conc. 20.0 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.0	-37	0.0	0.0	0.0	Pass
Span	10.1	3930	10.0	-0.1	-0.5	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	% //	Status
Zero	0.0	-37	0.0	0.0	0.0 🗸 /	Pass
Span	10.0	3930	10.0	0.0	0.0	Pass
	*Bias No. 1					

CO₂ Method: EPA 3A Span Conc. 19.8 %

		Bi	as Resu	Its		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.1	42	0.2	0.1	0.5	Pass
Span	9.9	3902	9.9	0.0	0.0	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.2	42	0.2	0.0	0.0 /	Pass
Span	9.9	3902	9.9	0.0	0.0 /	Pass
•	*Bias No. ′	1				1

BIAS AND CALIBRATION DRIFT

Number 2

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Start Time: 21:21

SO₂

Method: EPA 6C Span Conc. 911 ppm

	Bi	as Resu	Its		
Cal. ppm 1	Response mv 140	Bias ppm 8	Difference ppm 7	Error % 0.8 \checkmark	Status / Pass
457	4559	447	-10	-1.1 °	Pass
	Cali	ibration	Drift		
Initial*	Fina	al	Difference	Drift	
ppm	mv	ppm	ppm	%	Status
9	140	8	-1	-0.1	/ Pass
453 *Bias No. 1	4559	447	-6	-0.7	Pass
	ppm 1 457 Initial* ppm 9 453	Cal. Response mv ppm mv 1 140 457 4559 Cali Initial* ppm mv 9 140	Cal. ppm Response mv ppm 1 140 8 457 4559 447 Calibration Final ppm mv ppm 9 140 8 453 4559 447	ppm mv ppm ppm 1 140 8 7 457 4559 447 -10 Calibration Drift Initial* Final Difference ppm mv ppm ppm 9 140 8 -1 453 4559 447 -6	Cal. ppm Response mv ppm ppm ppm ppm ppm num Moderation ppm ppm ppm num Moderation ppm num Moderation ppm num Moderation ppm num Moderation ppm num Difference ppm num Drift ppm num ppm num

CALIBRATION DATA

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Project Number: 15730.001.009

Operator: VD

Date: 13 Oct 2021

Start Time: 07:38

 O_2

Method: EPA 3A

Calibration Type: Linear Regression

Calibration Results

**Cylinder ID Result, mv

Zero - -38

10.1 / EB0062273 3962

20.0 CC335419 7937

Curve Coefficients

Slope Intercept 398.9 -53

Corr. Coeff. >0.9999

CO₂ Method: EPA 3A

Calibration Type: Linear Regression

Calibration Results **% Cylinder ID Result, mv**Zero - 32

10.2 / EB0062273 3892

19.8 CC335419 7913

Curve Coefficients

Slope Intercept 397.7 -27

Corr. Coeff. 0.9996

CALIBRATION DATA

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Project Number: 15730.001.009

Operator: **VD**

Date: 13 Oct 2021

Start Time: 07:38

SO₂

Method: EPA 6C

Calibration Type: Linear Regression

10.07

Slope	Curve Coefficients	Corr. Coeff.	
911 /	CC259060	9230	
458 √ /	EB0108003	4654	
Zero	-	61	
ppm	Calibration Results Cylinder ID	Result, mv	
	O - Ple C D It -		

Intercept Corr. Coet 55 >0.9999

CALIBRATION ERROR DATA

Number 1

Client: New Indy

Location: Catawba, SC

Source: No. 2 Combination Boiler

Calibration 1

Project Number: 15730.001.009

Operator: VD

Date: 13 Oct 2021

Start Time: 07:38

 O_2

Method: EPA 3A Span Conc. 20.0 %

Slope 398.9

Intercept -52.9

Standard %	Response mv	Result	Difference %	Error	Status
Zero	-38	0.0	0.0	0.0	Pass
10.1	3962	10.1	0.0	0.0	Pass
20.0	7937	20.0	0.0	0.0	Pass

Method: EPA 3A Span Conc. 19.8 %

Slope 397.7

Intercept -27.1

Standard Response mv Result % mv % Zero 32 0.1 10.2 3892 9.9 19.8 7913 20.0	Difference % 0.1 -0.3 0.2	Error % 0.5 / -1.5 / 1.0 /	Status Pass Pass Pass
---	----------------------------------	-------------------------------------	-----------------------

SO₂

Method: EPA 6C Span Conc. 911 ppm

Slope 10.07

Intercept 55

Standard ppm Zero	Response mv 61	Result ppm	Difference ppm	Error % 0.1 ✓	Status Pass
458	4654	457	-1	-0.1	Pass
911	9230	911	0	0.0 /	Pass

METHODS AND ANALYZERS

Client: New Indy Project Number: 15730.001.009

Location: Catawba, SC Operator: VD

Source: No. 2 Combination Boiler Date: 13 Oct 2021

File: C:\Data\211013 New Indy Catawba No. 2 Combination Boiler Strat.cem

Program Version: 2.2, built 3 Jul 2020 File Version: 2.04

Computer: WSTRLXX-PC Trailer: 88
Analog Input Device: MCC USB-1608G

Channel 1

Analyte O₂

Method **EPA 3A**, Using Bias Analyzer Make, Model & Serial No. **CAI 600 s/n: E08008-M**

Full-Scale Output, mv 10000
Analyzer Range, % 20.0
Span Concentration, % 20.0

Channel 2

Analyte CO₂

Method **EPA 3A**, Using Bias Analyzer Make, Model & Serial No. **CAI 600 s/n: E08008-M**

Full-Scale Output, mv

Analyzer Range, %

Span Concentration, %

10000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

Channel 5

Analyte SO₂

Method EPA 6C, Using Bias

Analyzer Make, Model & Serial No. **Teledyne T100H SN410**

Full-Scale Output, mv 10000
Analyzer Range, ppm 1000
Span Concentration, ppm 911

INTERFERENCE CHECKS

Method 7E-Interfernce Response

600 Series NDIR/PMD, 100/200/300 Series NDIR/PMD, ZRE w/PMD Applies to Models: Date of Test:

Analyzer Type: Model:

20.7% O2, balance N2 <u>PMD</u> 602-P U09018-M Calibration Span: Serial Numer:

Test Gas	Interfernt Concentration	Zero Response	Zero Response Span Response	Interferent Response
802	513 ppm	0.000%	0.020%	0.020%
H2O	0.82%	0.015%	0.020%	0.020%
N2O	10.00 ppm	0.000%	0.000%	0.000%
NO	94.9 ppm	0.000%	0.000%	0.000%
NO2	99.8 ppm	0.000%	0.000%	0.000%
00	mdd 006	0.000%	%000.0	0.000%
CH4	90.9 ppm	0.000%	0.000%	0.000%
HCI	27.99ppm	0.000%	0.000%	0.000%
Sum of Responses				0.004%
% of Calibration Span				0.019%

Method 7E-Interfernce Response

600 Series NDIR, 100/200/300 Series NDIR, ZRE 1/26/2011 NDIR 602-P U09018-M Applies to Models: Date of Test:

Model: Serial Numer: Calibration Span: Analyzer Type:

20.2% CO2/Balance N2

Test Gas	Interfernt Concentration		Zero Response Span Response	Interferent Response
SO2	102.6 ppm	%000.0	0.000%	0.000%
H2O	0.82%	0.055%	0.055%	0.055%
N2O	10.00 ppm	0.005%	0.010%	0.010%
NO	94.9 ppm	0.005%	0.025%	0.025%
NO2	99.8 ppm	0.010%	0.010%	0.010%
CO	100.0 ppm	0.010%	0.010%	0.010%
CH4	101.0 ppm	0.010%	0.010%	0.010%
HCI	27.99ppm	0.010%	0.010%	0.010%
Sum of Responses				0.013%
% of Calibration Span				0.064%

August 4, 2014

To Whom It May Concern:

Teledyne Advanced Pollution Instrumentation has introduced new instrument models to replace our existing E Series gas analyzers. The new instruments are collectively referred to as our T Series models.

The fundamental design and all critical wetted, electronic, electrical and analytical components of the T Series instruments are identical to the E Series, including: UV sources, photo detectors, power supplies, pressure and flow transducers, pneumatic connectors and valves as well as external signal I/O connectors for serial data (RS-232/485 and Ethernet), analog concentration and status signals, and control inputs.

The design of all analytical algorithms, signal processing and control software algorithms are identical as well, including A/D measurements, digital signal filtering, concentration calculations, calibration factors and algorithms, temperature and pressure compensation, temperature control loops.

The primary differences between the models E Series and T Series instrument designs are provided below:

- 1. The 2 line by 40 character vacuum fluorescent display module is replaced by a 7" color LCD display with a touch screen interface. The current human user interface is emulated on the color, graphical display. The touch screen is used to emulate the existing 8 button context sensitive keyboard.
- 2. The software platform has been upgraded to support the graphical display and touchscreen. Software routines have been added to support the new analog input option, and a native Ethernet port on the CPU.
- 3. An upgraded CPU board that includes hardware to drive the LCD display and is backwards compatible with the current E-series CPU is used for the T-series analyzers.
- 4. A new front panel assembly has been designed to house the new display, and a new 9-pin connector will be added to the rear panel to support the new analog input option.
- 5. The new analog input option is designed to permit users to display and log, using the analyzer's internal data logger, signals from meteorological and other miscellaneous external sensors. None of the external signals are used in the calculations that yield calibrated concentration.

Internal production testing of the T Series analyzers that have been manufactured to date has shown that they meet the same analytical specifications as the equivalent E Series analyzers, including noise, linearity, drift, and response time.

We feel that, due to the nature of the changes described above and the testing performed to date, the modifications will not affect the performance characteristics of the analyzer.

Best Regards,

Doug Haugen

US National Sales Manager

Teledyne Advanced Pollution Instrumentation

(970) 224-3686

Douglas.haugen@teledyne.com

Method 7E Results	Method 7E Results for TAPI High Level Gas Analyzers	nalyzers			u	Instrument Type					
Potential Interferent Gas	Potential Interferent Gas Concentration	М100ЕН	M200EM	M200EH	M200EH CO2 Sensor	M201E	M300E	M300EM	M320E	M803E O2 Sensor	M803E CO2 Sensor
502	20 ppmv		0.012	-0.167	-0.014	0.001	-0.058	-0.092	-0.106	-0.061	-0.015
ON	15 ppmv	0.162			0.002		-0.015	-0.054	-0.035	-0.051	-0.015
NO2	15 ppmv	0.053			-0.026		-0.059	-0.007	0.041	-0.051	-0.027
N20	10 ppmv	-0.198	-0.033	-0.166	-0.036	0.040	0.113	-0.009		-0.041	-0.034
8	50 ppmv	-0.084	0.022	-0.211	0.000	-0.005			-2.518	-0.164	-0.034
CH4	50 ppmv	-0.051	-0.042	-0.461	-0.043	0.037	-0.025	-0.030	-0.068	0.000	-0.015
H2	50 ppmv	-0.230	-0.035	-0.253	-0.038	0.030	-0.061	-0.128	0.000	-0.010	-0.008
005	15%	0.361	-2.397	-0.808		-1.076	0.470	0.313	7.843	-0.026	
NH3	10 ppmv	0.000	0.000		0.000		0.000	0.000	0.000	0.000	0.000
HC	10 ppmv	0.047	0.168	-0.133	-0.032	0.078	-0.002	-0.087	0.073	-0.043	-0.027
H20	1%	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Absolute Sum of Responses	sponses	1.186	2.710	2.198	0.191	1.268	0.803	0.720	10.685	0.447	0.175
Calibration Span		90 ppm	mdd 06	90 ppm	15 %	18 ppm	90 ppm	90 ppm	90 ppm	20.95 %	15 %
Percent of Calibration Span	on Span	1.318	3.011	2.442	1.273	7.046	0.892	0.800	11.872	2.134	1.163

Environmental Protection Agency

TABLE 7E-3—EXAMPLE INTERFERENCE CHECK GAS CONCENTRATIONS

Potential	Concentrations ² sample conditioning type	ole conditioning type
interferent gas1	Hot wet	Dried
00,	5 and 15%	5 and 15%
HÖ	25%	1%
No	15 ppmv	15 ppmv
NO,	15 ppmv	15 ppmv
O.N	10 ppmv	10 ppmv
8	50 ppmv	50 ppmv
NH,	10 ppmv	10 ppmv
Ж.	50 ppmv	50 ppmv
SO ₂	20 ppmv	20 ppmv
H ₂	50 ppmv	50 ppmv
모	10 ppmv	10 ppmv

(1) Any applicable gas may be eliminated or tested at a reduced level if the manufacturer has provided reliable means for limiting or scrubbing that gas to a specified level.
(2) As practicable, gas concentrations should be the highest expected at test sites.

TABLE 7E-4—INTERFERENCE RESPONSE

Date of Test:

ш	
ċ	
Mer	
4-4,	
App. /	
₹	
S S	
Ė	

Analyzer Type:

			Analyzer response				0	
		n:	Concentration (ppm)				Sum of Responses	% of Calibration Span
Model No.:	Serial No:	Calibration Span:	Test gas type					%

PROJECT TEAM QUALIFICATIONS

8	Weston Solutions, Inc	c. Integrated Air Services Employee Qualifications	Joyee Qualifi	cations	
				Years of E	Years of Experience
					Emission
Name	Title/Position	Education/Training	QSTI	Total	Testing
		BS - English Ed Jacksonville State University (2011)			
Bryant, Ashley	Report Coordinator	MA - English - Jacksonville State University (2012)	QSTI 1	6	6
		BS - Horticulture			
Dubay, Van	Emissions Testing Specialist	Auburn University (2007)	QSTI 1, 3, & 4	9	9
		BA - Urban Environmental Studies			
Ennis, Brock	Emissions Testing Specialist	Birmingham-Southern College (2021)		1	1
		BS - Environmental Science			
Hammonds, Natalie	Quality Manager	Auburn University (1998)	QSTI 1	23	18
		BS - Env. Science			
Roberts, Wayne	Operations Manager	AU (1992)		28	27
		BA - Geography			
Scroggins, Robert	Emissions Testing Specialist	Auburn University (2012)	QSTI 1	2	2

APPENDIX E PROCESS OPERATING/PRODUCTION DATA

No. 1 Combination Boiler

Pulp Production (ODT/Hr) Pulp KAPPA 77.3 84 77.3 84 77.3 84 77.3 84 77.3 84 77.3 84 77.3 84	79.0
fuction 77.3 77.3 77.3 77.3 79.0 79.0 79.0 79.0 79.0 79.0 79.0 79.0	79.0
	11036
HVLC Flow to Boilers (SCFM) 10853 10963 10963 10963 11071 11071	11
SOG Flow to Boilers (SCFM) 1103 1200 1206 1206 SOG Flow to Boilers (SCFM)	
LVHC Flow to SOG Flow to HVLC Flow to Boilers Boilers Boilers (SCFM) (SCFM) (SCFM) 1447 1206 10963 1443 1206 10960 1420 1170 10900 1420 SOG Flow to HVLC Flow to HVLC Flow to HVLC Flow to HVLC Flow to SOG Flow to HVLC Flow to SOG Flow to HVLC	1420
Foul 1 Condensate Flow (GPM) 230 213 2 213 2 213 Condensate Foul Condensate Flow (GPM) 230 213 230 213 230 213 213 213 218 218 218 218 218 218 218 218 218 218	146
Stripper Foul Condensate Flow (GPM) 5.11 5.05 5.04 5.07 Stripper Foul Condensate Flow (GPM) 5.07	202
NCG S Scrubber pH (SU) P (SU) P (SU) 10.9 10.9 10.9 NCG S Scrubber pH (SU) 10.9	10.9
Scrubber Flow S (GPM) (GPM) 40 40 40 NCG Scrubber Flow S 40 40	40
TDF (TPH) 1.23 1.23 1.23 1.23 1.23 1.23	1.23
10³ 6.9 9.1 0.4 1.1.3	106.4
Bark Rate Gas Flow (10 ³ (Tons/Hr) SCF/Hr) 29.9 126.9 33.0 109.1 32.6 100.4 31.8 112.1 Bark Rate Gas Flow (10 ³ (Tons/Hr) SCF/Hr) 34.8 101.3	33.0
8 0	265.8
Steam Rate Start Time (10³ lbs/hr) 0844 262.3 1029 257.2 1206 257.2 261.9 With NCGs, without SOGs Start Time (10³ lbs/hr) 1407 267.7	1/14
13-Oct-21 Steam Rate Run # Start Time (10³ lbs/hr) 262.3 2 1029 266.3 3 1206 257.2 Average: 261.9 Condition 2: With NCGs, without SOGs 13-Oct-21 Steam Rate Start Time (10³ lbs/hr) 1 1407 267.7	Average:

Condition 1: With NCGs, with SOGs

Combination Boiler #1

No. 2 COMBINATION BOILER

			\PPA	2	2	7	00						A	00	7	3	
			Pulp KAPPA	94.	88.2	80.	87.8						Pulp KAPPA	78.	78.7	79.	
		Pulp Production	(ODT/Hr)	91.1	91.1	91.1	91.1					Pulp Production	(ODT/Hr)	92.9	92.9	92.9	92.9
	HVLC Flow to	Boilers	(SCFM)	11071	11160	11090	11107				SOG Flow to HVLC Flow to	Boilers	(SCFM)	11109	11060	10977	11049
	SOG Flow to		(SCFM)	1203	1179	1157	1180					Boilers	(SCFM)				
	LVHC Flow to	Boilers	(SCFM)	1409	1420	1429	1419				LVHC Flow to	Boilers	(SCFM)	1438	1435	1453	1442
	Hard Pipe Foul		Flow (GPM)				203			Hard Pipe	Foul		Flow (GPM)				232
	Stripper Foul		Flow (GPM)				205				Stripper Foul	Condensate	Flow (GPM)	505	505	505	505
	S	Scrubber pH	(ns)	10.9	10.9	10.9	10.9				NCG	Scrubber pH	(ns)	10.9	10.9	10.9	10.9
	NCG	Flow	(GPM)	40	40	40	40			NCG	Scrubber	Flow	(GPM)	40	40	40	40
			TDF (TPH)	1.23	1.23	1.23	1.23						TDF (TPH)	1.23	1.23	0.65	1.04
		Bark Rate Gas Flow (10 ³	SCF/Hr)	188.7	115.6	171.4	158.6					Gas Flow (10 ³	SCF/Hr)	174.8	206.4	220.6	200.6
		Bark Rate	(Tons/Hr)	29.8	46.3	25.4	33.8					Bark Rate	(Tons/Hr)	21.7	35.4	49.6	35.6
		Steam Rate	(10 ³ lbs/hr)	241	251	211	234	Condition 2: With NCGs, without SOGs				Steam Rate	Start Time (10 ³ lbs/hr)	198			210
			Run # Start Time	0830	1026	1222		With NCGs					Start Time	1410	2 1547	1725	
14-0ct-21			Run #		2	3	Average:	Condition 2:	14-0ct-21				Run #	1	2	e	Average:

Condition 1: With NCGs, with SOGs

Combination Boiler #2

END OF DOCUMENT